ariankhalfani's picture
Rename app.py to app2.py
5c5f265 verified
raw
history blame
7.05 kB
import gradio as gr
from ultralytics import YOLO
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import os
from pathlib import Path
import shutil
import tempfile
# Load YOLOv8 model
model = YOLO("best.pt")
# Create directories if not present
uploaded_folder = Path('Uploaded_Picture')
predicted_folder = Path('Predicted_Picture')
uploaded_folder.mkdir(parents=True, exist_ok=True)
predicted_folder.mkdir(parents=True, exist_ok=True)
# Global patient data list to accumulate HTML data
patient_data = []
def predict_image(input_image, name, age, medical_record, sex):
if input_image is None:
return None, "Please Input The Image"
# Convert Gradio input image (PIL Image) to numpy array
image_np = np.array(input_image)
# Ensure the image is in the correct format
if len(image_np.shape) == 2: # grayscale to RGB
image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB)
elif image_np.shape[2] == 4: # RGBA to RGB
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB)
# Perform prediction
results = model(image_np)
# Draw bounding boxes and white circle on the image
image_with_boxes = image_np.copy()
raw_predictions = []
if results[0].boxes:
highest_confidence_result = max(results[0].boxes, key=lambda x: x.conf.item())
class_index = highest_confidence_result.cls.item()
if class_index == 0:
label = "Immature"
color = (0, 255, 255)
elif class_index == 1:
label = "Mature"
color = (255, 0, 0)
else:
label = "Normal"
color = (0, 255, 0)
confidence = highest_confidence_result.conf.item()
xmin, ymin, xmax, ymax = map(int, highest_confidence_result.xyxy[0])
# Draw the bounding box
cv2.rectangle(image_with_boxes, (xmin, ymin), (xmax, ymax), color, 2)
# Draw the white circle in the center of the bounding box
box_width = xmax - xmin
box_height = ymax - ymin
center_x = xmin + box_width // 2
center_y = ymin + box_height // 2
radius = int((box_width + box_height) / 2 / 12)
cv2.circle(image_with_boxes, (center_x, center_y), radius, (255, 255, 255), 2)
# Enlarge font scale and thickness
font_scale = 1.0
thickness = 2
# Put the label text with black background
cv2.putText(image_with_boxes, f'{label} {confidence:.2f}', (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), thickness)
raw_predictions.append(f"Label: {label}, Confidence: {confidence:.2f}, Box: [{xmin}, {ymin}, {xmax}, {ymax}]")
raw_predictions_str = "\n".join(raw_predictions)
# Convert to PIL image for further processing
pil_image_with_boxes = Image.fromarray(image_with_boxes)
# Add text and watermark
pil_image_with_boxes = add_text_and_watermark(pil_image_with_boxes, name, age, medical_record, sex, label)
# Save images to directories
image_name = f"{name}-{age}-{sex}-{medical_record}.png"
input_image.save(uploaded_folder / image_name)
pil_image_with_boxes.save(predicted_folder / image_name)
return pil_image_with_boxes, raw_predictions_str
# Function to add text and watermark
def add_text_and_watermark(image, name, age, medical_record, sex, label):
draw = ImageDraw.Draw(image)
font_size = 24
try:
font = ImageFont.truetype("font.ttf", size=font_size)
except IOError:
font = ImageFont.load_default()
print("Error: cannot open resource, using default font.")
text = f"Name: {name}, Age: {age}, Medical Record: {medical_record}, Sex: {sex}, Result: {label}"
text_x, text_y = 20, 40
padding = 10
# Draw a filled rectangle for the background
draw.rectangle(
[text_x - padding, text_y - padding, text_x + 500, text_y + 30 + padding],
fill="black"
)
# Draw text on top of the rectangle
draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)
return image
# Function to save patient info in HTML and accumulate data
def save_patient_info_to_html(name, age, medical_record, sex, result):
global patient_data
new_data = f"<p><strong>Name:</strong> {name}, <strong>Age:</strong> {age}, <strong>Medical Record:</strong> {medical_record}, <strong>Sex:</strong> {sex}, <strong>Result:</strong> {result}</p>"
patient_data.append(new_data)
html_content = f"""
<html>
<body>
<h1>Patient Information</h1>
{''.join(patient_data)}
</body>
</html>
"""
html_file_path = os.path.join(tempfile.gettempdir(), 'patient_info.html')
with open(html_file_path, 'w') as f:
f.write(html_content)
return html_file_path
# Function to download the folders
def download_folder(folder_path):
zip_path = os.path.join(tempfile.gettempdir(), f"{Path(folder_path).name}.zip")
shutil.make_archive(zip_path.replace('.zip', ''), 'zip', folder_path)
return zip_path
# Gradio Interface
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# Cataract Detection System")
gr.Markdown("Upload an image to detect cataract and add patient details.")
gr.Markdown("This application uses YOLOv8 with mAP=0.981")
with gr.Column():
name = gr.Textbox(label="Name")
age = gr.Number(label="Age")
medical_record = gr.Number(label="Medical Record")
sex = gr.Radio(["Male", "Female"], label="Sex")
input_image = gr.Image(type="pil", label="Upload an Image", image_mode="RGB")
with gr.Column():
submit_btn = gr.Button("Submit")
output_image = gr.Image(type="pil", label="Predicted Image")
with gr.Row():
raw_result = gr.Textbox(label="Prediction Result")
with gr.Row():
download_html_btn = gr.Button("Download Patient Information (HTML)")
download_uploaded_btn = gr.Button("Download Uploaded Images")
download_predicted_btn = gr.Button("Download Predicted Images")
patient_info_file = gr.File(label="Patient Information HTML File")
uploaded_folder_file = gr.File(label="Uploaded Images Zip File")
predicted_folder_file = gr.File(label="Predicted Images Zip File")
# Use gr.State to hold folder paths
uploaded_folder_state = gr.State(str(uploaded_folder))
predicted_folder_state = gr.State(str(predicted_folder))
submit_btn.click(fn=predict_image, inputs=[name, age, medical_record, sex, input_image], outputs=[output_image, raw_result])
download_html_btn.click(fn=save_patient_info_to_html, inputs=[name, age, medical_record, sex, raw_result], outputs=patient_info_file)
download_uploaded_btn.click(fn=download_folder, inputs=[uploaded_folder_state], outputs=uploaded_folder_file)
download_predicted_btn.click(fn=download_folder, inputs=[predicted_folder_state], outputs=predicted_folder_file)
# Launch Gradio app
demo.launch()