|
import gradio as gr |
|
from ultralytics import YOLO |
|
import cv2 |
|
import numpy as np |
|
from PIL import Image, ImageDraw, ImageFont |
|
import os |
|
from pathlib import Path |
|
import shutil |
|
import tempfile |
|
|
|
|
|
model = YOLO("best.pt") |
|
|
|
|
|
uploaded_folder = Path('Uploaded_Picture') |
|
predicted_folder = Path('Predicted_Picture') |
|
uploaded_folder.mkdir(parents=True, exist_ok=True) |
|
predicted_folder.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
patient_data = [] |
|
|
|
def predict_image(input_image, name, age, medical_record, sex): |
|
if input_image is None: |
|
return None, "Please Input The Image" |
|
|
|
|
|
image_np = np.array(input_image) |
|
|
|
|
|
if len(image_np.shape) == 2: |
|
image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB) |
|
elif image_np.shape[2] == 4: |
|
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB) |
|
|
|
|
|
results = model(image_np) |
|
|
|
|
|
image_with_boxes = image_np.copy() |
|
raw_predictions = [] |
|
|
|
if results[0].boxes: |
|
highest_confidence_result = max(results[0].boxes, key=lambda x: x.conf.item()) |
|
class_index = highest_confidence_result.cls.item() |
|
if class_index == 0: |
|
label = "Immature" |
|
color = (0, 255, 255) |
|
elif class_index == 1: |
|
label = "Mature" |
|
color = (255, 0, 0) |
|
else: |
|
label = "Normal" |
|
color = (0, 255, 0) |
|
|
|
confidence = highest_confidence_result.conf.item() |
|
xmin, ymin, xmax, ymax = map(int, highest_confidence_result.xyxy[0]) |
|
|
|
|
|
cv2.rectangle(image_with_boxes, (xmin, ymin), (xmax, ymax), color, 2) |
|
|
|
|
|
box_width = xmax - xmin |
|
box_height = ymax - ymin |
|
center_x = xmin + box_width // 2 |
|
center_y = ymin + box_height // 2 |
|
radius = int((box_width + box_height) / 2 / 12) |
|
cv2.circle(image_with_boxes, (center_x, center_y), radius, (255, 255, 255), 2) |
|
|
|
|
|
font_scale = 1.0 |
|
thickness = 2 |
|
|
|
|
|
cv2.putText(image_with_boxes, f'{label} {confidence:.2f}', (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), thickness) |
|
|
|
raw_predictions.append(f"Label: {label}, Confidence: {confidence:.2f}, Box: [{xmin}, {ymin}, {xmax}, {ymax}]") |
|
|
|
raw_predictions_str = "\n".join(raw_predictions) |
|
|
|
|
|
pil_image_with_boxes = Image.fromarray(image_with_boxes) |
|
|
|
|
|
pil_image_with_boxes = add_text_and_watermark(pil_image_with_boxes, name, age, medical_record, sex, label) |
|
|
|
|
|
image_name = f"{name}-{age}-{sex}-{medical_record}.png" |
|
input_image.save(uploaded_folder / image_name) |
|
pil_image_with_boxes.save(predicted_folder / image_name) |
|
|
|
return pil_image_with_boxes, raw_predictions_str |
|
|
|
|
|
def add_text_and_watermark(image, name, age, medical_record, sex, label): |
|
draw = ImageDraw.Draw(image) |
|
|
|
font_size = 24 |
|
try: |
|
font = ImageFont.truetype("font.ttf", size=font_size) |
|
except IOError: |
|
font = ImageFont.load_default() |
|
print("Error: cannot open resource, using default font.") |
|
|
|
text = f"Name: {name}, Age: {age}, Medical Record: {medical_record}, Sex: {sex}, Result: {label}" |
|
text_x, text_y = 20, 40 |
|
padding = 10 |
|
|
|
|
|
draw.rectangle( |
|
[text_x - padding, text_y - padding, text_x + 500, text_y + 30 + padding], |
|
fill="black" |
|
) |
|
|
|
|
|
draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font) |
|
|
|
return image |
|
|
|
|
|
def save_patient_info_to_html(name, age, medical_record, sex, result): |
|
global patient_data |
|
new_data = f"<p><strong>Name:</strong> {name}, <strong>Age:</strong> {age}, <strong>Medical Record:</strong> {medical_record}, <strong>Sex:</strong> {sex}, <strong>Result:</strong> {result}</p>" |
|
patient_data.append(new_data) |
|
|
|
html_content = f""" |
|
<html> |
|
<body> |
|
<h1>Patient Information</h1> |
|
{''.join(patient_data)} |
|
</body> |
|
</html> |
|
""" |
|
|
|
html_file_path = os.path.join(tempfile.gettempdir(), 'patient_info.html') |
|
with open(html_file_path, 'w') as f: |
|
f.write(html_content) |
|
|
|
return html_file_path |
|
|
|
|
|
def download_folder(folder_path): |
|
zip_path = os.path.join(tempfile.gettempdir(), f"{Path(folder_path).name}.zip") |
|
shutil.make_archive(zip_path.replace('.zip', ''), 'zip', folder_path) |
|
return zip_path |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Column(): |
|
gr.Markdown("# Cataract Detection System") |
|
gr.Markdown("Upload an image to detect cataract and add patient details.") |
|
gr.Markdown("This application uses YOLOv8 with mAP=0.981") |
|
|
|
with gr.Column(): |
|
name = gr.Textbox(label="Name") |
|
age = gr.Number(label="Age") |
|
medical_record = gr.Number(label="Medical Record") |
|
sex = gr.Radio(["Male", "Female"], label="Sex") |
|
input_image = gr.Image(type="pil", label="Upload an Image", image_mode="RGB") |
|
|
|
with gr.Column(): |
|
submit_btn = gr.Button("Submit") |
|
output_image = gr.Image(type="pil", label="Predicted Image") |
|
|
|
with gr.Row(): |
|
raw_result = gr.Textbox(label="Prediction Result") |
|
|
|
with gr.Row(): |
|
download_html_btn = gr.Button("Download Patient Information (HTML)") |
|
download_uploaded_btn = gr.Button("Download Uploaded Images") |
|
download_predicted_btn = gr.Button("Download Predicted Images") |
|
|
|
patient_info_file = gr.File(label="Patient Information HTML File") |
|
uploaded_folder_file = gr.File(label="Uploaded Images Zip File") |
|
predicted_folder_file = gr.File(label="Predicted Images Zip File") |
|
|
|
|
|
uploaded_folder_state = gr.State(str(uploaded_folder)) |
|
predicted_folder_state = gr.State(str(predicted_folder)) |
|
|
|
submit_btn.click(fn=predict_image, inputs=[name, age, medical_record, sex, input_image], outputs=[output_image, raw_result]) |
|
download_html_btn.click(fn=save_patient_info_to_html, inputs=[name, age, medical_record, sex, raw_result], outputs=patient_info_file) |
|
download_uploaded_btn.click(fn=download_folder, inputs=[uploaded_folder_state], outputs=uploaded_folder_file) |
|
download_predicted_btn.click(fn=download_folder, inputs=[predicted_folder_state], outputs=predicted_folder_file) |
|
|
|
|
|
demo.launch() |