ariankhalfani's picture
Rename app.py to app5.py
aa1dd06 verified
raw
history blame
6.5 kB
import gradio as gr
from ultralytics import YOLO
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import base64
from io import BytesIO
import zipfile
import os
from pathlib import Path
# Load YOLOv8 model
model = YOLO("best.pt")
# Define paths for uploaded and predicted images
uploaded_folder = Path('Uploaded_Picture')
predicted_folder = Path('Predicted_Picture')
uploaded_folder.mkdir(parents=True, exist_ok=True)
predicted_folder.mkdir(parents=True, exist_ok=True)
# Path for HTML database file
html_db_file = Path('patient_predictions.html')
# Initialize HTML file if not present
if not html_db_file.exists():
with open(html_db_file, 'w') as f:
f.write("""
<html>
<head><title>Patient Prediction Database</title></head>
<body>
<h1>Patient Prediction Database</h1>
<table border="1" style="width:100%; border-collapse: collapse; text-align: center;">
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Medical Record</th>
<th>Sex</th>
<th>Result</th>
<th>Predicted Image</th>
</tr>
</thead>
<tbody>
""")
def predict_image(input_image, name, age, medical_record, sex):
# Ensure input image is provided
if input_image is None:
return None, "Please upload an image for prediction."
# Convert PIL image to NumPy array
image_np = np.array(input_image)
# Perform YOLO prediction
results = model(image_np)
image_with_boxes = image_np.copy()
label = "Unknown"
if results[0].boxes:
# Take the result with the highest confidence
best_result = max(results[0].boxes, key=lambda x: x.conf.item())
class_index = best_result.cls.item()
# Determine class label
if class_index == 0:
label = "Immature"
color = (0, 255, 255)
elif class_index == 1:
label = "Mature"
color = (255, 0, 0)
else:
label = "Normal"
color = (0, 255, 0)
confidence = best_result.conf.item()
xmin, ymin, xmax, ymax = map(int, best_result.xyxy[0])
# Draw bounding box and label on image
cv2.rectangle(image_with_boxes, (xmin, ymin), (xmax, ymax), color, 2)
font_scale, thickness = 1.0, 2
cv2.putText(image_with_boxes, f'{label} {confidence:.2f}', (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, font_scale, color, thickness)
# Convert the annotated image back to PIL
pil_image_with_boxes = Image.fromarray(image_with_boxes)
# Save images to folders
image_name = f"{name}_{age}_{medical_record}_{sex}.png"
input_image.save(uploaded_folder / image_name)
pil_image_with_boxes.save(predicted_folder / image_name)
# Convert predicted image to base64 for embedding in HTML
buffered = BytesIO()
pil_image_with_boxes.save(buffered, format="PNG")
predicted_image_base64 = base64.b64encode(buffered.getvalue()).decode()
# Append patient information to HTML
append_patient_info_to_html(name, age, medical_record, sex, label, predicted_image_base64)
raw_prediction = f"Name: {name}, Age: {age}, Medical Record: {medical_record}, Sex: {sex}, Result: {label}"
return pil_image_with_boxes, raw_prediction
def append_patient_info_to_html(name, age, medical_record, sex, result, predicted_image_base64):
# Append a new patient entry to the HTML file
html_entry = f"""
<tr>
<td>{name}</td>
<td>{age}</td>
<td>{medical_record}</td>
<td>{sex}</td>
<td>{result}</td>
<td><img src="data:image/png;base64,{predicted_image_base64}" alt="Predicted Image" width="150"></td>
</tr>
"""
with open(html_db_file, 'a') as f:
f.write(html_entry)
# Close the HTML file after writing (for proper structure)
with open(html_db_file, 'a') as f:
f.write("</tbody></table></body></html>")
return str(html_db_file)
def download_uploaded_folder():
# Create a zip file of the uploaded folder
zip_path = 'uploaded_images.zip'
with zipfile.ZipFile(zip_path, 'w') as zf:
for file in uploaded_folder.iterdir():
zf.write(file, arcname=file.name)
return zip_path
def download_predicted_folder():
# Create a zip file of the predicted folder
zip_path = 'predicted_images.zip'
with zipfile.ZipFile(zip_path, 'w') as zf:
for file in predicted_folder.iterdir():
zf.write(file, arcname=file.name)
return zip_path
# Launch Gradio Interface
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# Cataract Detection System")
gr.Markdown("Upload an image to detect cataract and add patient details.")
gr.Markdown("This application uses YOLOv8 with mAP=0.981")
with gr.Column():
name = gr.Textbox(label="Name")
age = gr.Number(label="Age")
medical_record = gr.Number(label="Medical Record")
sex = gr.Radio(["Male", "Female"], label="Sex")
input_image = gr.Image(type="pil", label="Upload an Image", image_mode="RGB")
with gr.Column():
submit_btn = gr.Button("Submit")
output_image = gr.Image(type="pil", label="Predicted Image")
with gr.Row():
raw_result = gr.Textbox(label="Prediction Result")
with gr.Row():
download_html_btn = gr.Button("Download Patient Information (HTML)")
download_uploaded_btn = gr.Button("Download Uploaded Images")
download_predicted_btn = gr.Button("Download Predicted Images")
# Add file download output components for the uploaded and predicted images
patient_info_file = gr.File(label="Patient Information HTML File")
uploaded_folder_file = gr.File(label="Uploaded Images Zip File")
predicted_folder_file = gr.File(label="Predicted Images Zip File")
# Connect functions with components
submit_btn.click(fn=predict_image, inputs=[name, age, medical_record, sex, input_image], outputs=[output_image, raw_result])
download_html_btn.click(fn=append_patient_info_to_html, inputs=[name, age, medical_record, sex, raw_result], outputs=patient_info_file)
download_uploaded_btn.click(fn=download_uploaded_folder, outputs=uploaded_folder_file)
download_predicted_btn.click(fn=download_predicted_folder, outputs=predicted_folder_file)
# Launch Gradio app
demo.launch()