File size: 8,843 Bytes
26a7fa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acbef3a
26a7fa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bbf8d8
9a6086b
0bbf8d8
 
9a6086b
26a7fa8
9a6086b
0bbf8d8
 
26a7fa8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import gradio as gr
from ultralytics import YOLO
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import base64
from io import BytesIO
import tempfile
import os
from pathlib import Path
import shutil

# Load YOLOv8 model
model = YOLO("best.pt")

# Create directories if not present
uploaded_folder = Path('Uploaded_Picture')
predicted_folder = Path('Predicted_Picture')
uploaded_folder.mkdir(parents=True, exist_ok=True)
predicted_folder.mkdir(parents=True, exist_ok=True)

def predict_image(input_image, name, age, medical_record, sex):
    if input_image is None:
        return None, "Please Input The Image"

    # Convert Gradio input image (PIL Image) to numpy array
    image_np = np.array(input_image)

    # Ensure the image is in the correct format
    if len(image_np.shape) == 2:  # grayscale to RGB
        image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB)
    elif image_np.shape[2] == 4:  # RGBA to RGB
        image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB)

    # Perform prediction
    results = model(image_np)

    # Draw bounding boxes on the image
    image_with_boxes = image_np.copy()
    raw_predictions = []

    if results[0].boxes:
        # Sort the results by confidence and take the highest confidence one
        highest_confidence_result = max(results[0].boxes, key=lambda x: x.conf.item())

        # Determine the label based on the class index
        class_index = highest_confidence_result.cls.item()
        if class_index == 0:
            label = "Immature"
            color = (0, 255, 255)  # Yellow for Immature
        elif class_index == 1:
            label = "Mature"
            color = (255, 0, 0)  # Red for Mature
        else:
            label = "Normal"
            color = (0, 255, 0)  # Green for Normal

        confidence = highest_confidence_result.conf.item()
        xmin, ymin, xmax, ymax = map(int, highest_confidence_result.xyxy[0])
        
        # Draw the bounding box
        cv2.rectangle(image_with_boxes, (xmin, ymin), (xmax, ymax), color, 2)
        
        # Enlarge font scale and thickness
        font_scale = 1.0
        thickness = 2
        
        # Calculate label background size
        (text_width, text_height), baseline = cv2.getTextSize(f'{label} {confidence:.2f}', cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness)
        cv2.rectangle(image_with_boxes, (xmin, ymin - text_height - baseline), (xmin + text_width, ymin), (0, 0, 0), cv2.FILLED)
        
        # Put the label text with black background
        cv2.putText(image_with_boxes, f'{label} {confidence:.2f}', (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), thickness)
        
        raw_predictions.append(f"Label: {label}, Confidence: {confidence:.2f}, Box: [{xmin}, {ymin}, {xmax}, {ymax}]")

    raw_predictions_str = "\n".join(raw_predictions)
    
    # Convert to PIL image for further processing
    pil_image_with_boxes = Image.fromarray(image_with_boxes)

    # Add text and watermark
    pil_image_with_boxes = add_text_and_watermark(pil_image_with_boxes, name, age, medical_record, sex, label)
    
    # Save images to directories
    image_name = f"{name}-{age}-{sex}-{medical_record}.png"
    input_image.save(uploaded_folder / image_name)
    pil_image_with_boxes.save(predicted_folder / image_name)
    
    return pil_image_with_boxes, raw_predictions_str

# Function to add watermark
def add_watermark(image):
    try:
        logo = Image.open('image-logo.png').convert("RGBA")
        image = image.convert("RGBA")
        
        # Resize logo
        basewidth = 100
        wpercent = (basewidth / float(logo.size[0]))
        hsize = int((float(wpercent) * logo.size[1]))
        logo = logo.resize((basewidth, hsize), Image.LANCZOS)
        
        # Position logo
        position = (image.width - logo.width - 10, image.height - logo.height - 10)
        
        # Composite image
        transparent = Image.new('RGBA', (image.width, image.height), (0, 0, 0, 0))
        transparent.paste(image, (0, 0))
        transparent.paste(logo, position, mask=logo)
        
        return transparent.convert("RGB")
    except Exception as e:
        print(f"Error adding watermark: {e}")
        return image

# Function to add text and watermark
def add_text_and_watermark(image, name, age, medical_record, sex, label):
    draw = ImageDraw.Draw(image)
    
    # Load a larger font (adjust the size as needed)
    font_size = 24  # Example font size
    try:
        font = ImageFont.truetype("font.ttf", size=font_size)
    except IOError:
        font = ImageFont.load_default()
        print("Error: cannot open resource, using default font.")
    
    text = f"Name: {name}, Age: {age}, Medical Record: {medical_record}, Sex: {sex}, Result: {label}"
    
    # Calculate text bounding box
    text_bbox = draw.textbbox((0, 0), text, font=font)
    text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
    text_x = 20
    text_y = 40
    padding = 10

    # Draw a filled rectangle for the background
    draw.rectangle(
        [text_x - padding, text_y - padding, text_x + text_width + padding, text_y + text_height + padding],
        fill="black"
    )
    
    # Draw text on top of the rectangle
    draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)

    # Add watermark to the image
    image_with_watermark = add_watermark(image)
    
    return image_with_watermark

# Function to save patient info in HTML
def save_patient_info_to_html(name, age, medical_record, sex, result):
    html_content = f"""
    <html>
        <body>
            <h1>Patient Information</h1>
            <p><strong>Name:</strong> {name}</p>
            <p><strong>Age:</strong> {age}</p>
            <p><strong>Medical Record:</strong> {medical_record}</p>
            <p><strong>Sex:</strong> {sex}</p>
            <p><strong>Result:</strong> {result}</p>
        </body>
    </html>
    """
    
    # Save HTML content to file
    html_file_path = os.path.join(tempfile.gettempdir(), f'{name}-{age}-{sex}-{medical_record}.html')
    with open(html_file_path, 'w') as f:
        f.write(html_content)
    
    return html_file_path

# Function to download the folders
def download_folder(folder):
    zip_path = os.path.join(tempfile.gettempdir(), f"{folder}.zip")
    
    # Zip the folder
    shutil.make_archive(zip_path.replace('.zip', ''), 'zip', folder)
    
    return zip_path

# Gradio Interface
def interface(name, age, medical_record, sex, input_image):
    if input_image is None:
        return None, "Please upload an image.", None

    output_image, raw_result = predict_image(input_image, name, age, medical_record, sex)
    html_file = save_patient_info_to_html(name, age, medical_record, sex, raw_result)
    
    return output_image, raw_result, html_file

# Download Functions
def download_predicted_folder():
    return download_folder(predicted_folder)

def download_uploaded_folder():
    return download_folder(uploaded_folder)

# Gradio Blocks
with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown("# Cataract Detection System")
        gr.Markdown("Upload an image to detect cataract and add patient details.")
        gr.Markdown("This application uses YOLOv8 with mAP=0.981")
    
    with gr.Column():
        name = gr.Textbox(label="Name")
        age = gr.Number(label="Age")
        medical_record = gr.Number(label="Medical Record")
        sex = gr.Radio(["Male", "Female"], label="Sex")
        input_image = gr.Image(type="pil", label="Upload an Image", image_mode="RGB")

    with gr.Column():
        submit_btn = gr.Button("Submit")
        output_image = gr.Image(type="pil", label="Predicted Image")

    with gr.Row():
        raw_result = gr.Textbox(label="Prediction Result")
    
    with gr.Row():
        download_html_btn = gr.Button("Download Patient Information (HTML)")
        download_uploaded_btn = gr.Button("Download Uploaded Images")
        download_predicted_btn = gr.Button("Download Predicted Images")
    
    # Add file download output components for the uploaded and predicted images
    patient_info_file = gr.File(label="Patient Information HTML File")
    uploaded_folder_file = gr.File(label="Uploaded Images Zip File")
    predicted_folder_file = gr.File(label="Predicted Images Zip File")

    submit_btn.click(fn=interface, inputs=[name, age, medical_record, sex, input_image], outputs=[output_image, raw_result])
    download_html_btn.click(fn=save_patient_info_to_html, inputs=[name, age, medical_record, sex, raw_result], outputs=patient_info_file)
    download_uploaded_btn.click(fn=download_uploaded_folder, outputs=uploaded_folder_file)
    download_predicted_btn.click(fn=download_predicted_folder, outputs=predicted_folder_file)

# Launch Gradio app
demo.launch()