Weiyun1025's picture
update app.py
ccec171
raw
history blame
14.4 kB
import os
import re
import uuid
import random
import json
import shutil
import requests
import argparse
from pathlib import Path
import dataclasses
from io import BytesIO
from functools import partial
from typing import Any, List , Dict, Union, Literal,TypedDict
import cv2
import numpy as np
import gradio as gr
from PIL import Image
import gradio.themes.base as ThemeBase
from gradio.themes.utils import colors, fonts, sizes
from utils import draw_points_to_image, in_rectangle
# IMAGE_PATH = "/mnt/petrelfs/share_data/huangzhenhang/tmp/as_demo_data/sa_img_000000/"
# IMAGE_PATH = "/mnt/petrelfs/share_data/gaozhangwei/as_demo_data/saved_images"
IMAGE_PATH = "./images"
METAFILE_PATH = "./metafile/metafile.json"
SAVE_PATH = "./images"
class Bot:
def __init__(self):
img_list = os.listdir(IMAGE_PATH)
self.image_paths = [Path(os.path.join(IMAGE_PATH, img_item)) for img_item in img_list if img_item.endswith(".jpg")]
# self.show_index = random.sample(range(len(self.image_paths)), min(50, len(self.image_paths)))
self.show_index = list(range(min(50, len(self.image_paths))))
self.gallery_show_paths = [self.image_paths[index] for index in self.show_index]
with open(METAFILE_PATH,"r") as f:
self.metadata = json.load(f)
def add_gellary_image(self,user_state:dict,evt: gr.SelectData ):
index = self.show_index[evt.index]
print(f"\nselect No.{index} image", )
return index, *self.add_image(user_state,type="index",index=index)
def add_image(self, user_state:dict,
index:int=0,
image_path:str = None, #path
type:Literal["random","image","index"] = "index",
):
if type == "image" and os.path.exists(image_path):
image = Image.open(image_path).convert("RGB")
elif type == "index" and index < len(self.image_paths):
image_path = self.image_paths[index]
image = Image.open(image_path).convert("RGB")
else:
image_path = random.sample(self.image_paths, 1)[0]
image = Image.open(image_path).convert("RGB")
img_item = os.path.basename(image_path)
print('\nupload an image: ',img_item)
try:
ann_path = self.metadata[img_item]
with open(ann_path,"r") as f:
ann = json.load(f)
except Exception as e:
print(e)
return image, user_state
data = {"origin_image":image,
"path":image_path,
"ann":ann["annotations"],
"size":
{"width":
ann["image"]["width"],
"height":
ann["image"]["height"]
}
}
user_state.update(data)
user_state["points"] = []
return image, user_state
def add_points(self, user_state:dict, evt: gr.SelectData):
if user_state.get('origin_image', None) is None:
img, user_state = self.add_image(user_state,type="random")
else:
img = user_state["origin_image"]
# add points
new_point = [evt.index[0], evt.index[1]]
print("add point: ", new_point )
if len(user_state.setdefault("points",[])) == 0 :
user_state["points"].append(new_point)
else:
new_mask_points = [point for point in user_state["points"]
if (new_point[0]- point[0])**2 + (new_point[1]- point[1])**2 > 225]
if len(new_mask_points) == len(user_state["points"]):
new_mask_points.append(new_point)
user_state["points"] = new_mask_points
if len(user_state["points"]) == 0:
return None, img, user_state
# find bbox
candidate_bboxs = [bbox for bbox in user_state["ann"] if in_rectangle(bbox["box"],user_state["points"])]
if len(candidate_bboxs) > 0:
size = [bbox["box"][2]*bbox["box"][3] for bbox in candidate_bboxs]
final_bbox = candidate_bboxs[size.index(min(size))]
x,y,w,h = tuple(final_bbox["box"])
x1,y1,x2,y2 = int(x),int(y),int(x+w),int(y+h)
user_state["final_ann"] = final_bbox
label = final_bbox["semantic_tag"][0]
np_img = np.array(img)
cv2_image = cv2.cvtColor(np_img, cv2.COLOR_RGB2BGR)
cv2.rectangle(cv2_image, (x1, y1), (x2,y2), (0, 255, 0), 4)
cv2.putText(cv2_image,label, (int(x), int(y) + 50), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (0, 0, 255), 4)
cv2_image_rgb = cv2.cvtColor(cv2_image, cv2.COLOR_BGR2RGB)
new_image = self._blend_bbox(cv2_image_rgb, (x1,y1,x2,y2))
new_image = Image.fromarray(new_image)
else:
user_state["final_ann"] = {}
new_image = img.copy()
label = None
# show image
new_image = draw_points_to_image(new_image,user_state["points"])
return label, new_image, user_state
def save_img(self,user_stare:dict):
img_path = user_stare.get("path",None)
if img_path is not None:
name = os.path.basename(img_path)
new_path = os.path.join(SAVE_PATH,name)
if not os.path.exists(new_path):
shutil.copy(img_path, new_path)
print("save image: ",name)
else:
print("The image path already exists.")
return gr.update(value = "Saved!"), user_stare
else:
print("can't find image")
return gr.update(value = "Save failed!"), user_stare
def add_ann(self, user_state:dict):
ann = user_state.get("final_ann",{})
question = ann.get("question",[]).copy()
question.append("Image caption")
return gr.update(choices = question), user_state
def update_answer(self,user_state:dict,evt: gr.SelectData):
ann = user_state.get("final_ann",{})
select_question = evt.value
print("selected question:", select_question )
if select_question in ann["question"]:
answer = ann["answer"][min(evt.index,len(ann["answer"]))]
print("selected answer:", answer )
return answer, user_state
elif evt.index == len(ann["answer"]):
return ann.get("caption",None), user_state
else:
print("selected answer: None")
return None,user_state
def update_all_answer(self, user_state:dict):
ann = user_state.get("final_ann",{})
question = ann.get("question",[]).copy()
answer = ann.get("answer",[]).copy()
caption = ann.get("caption", None)
if caption is None:
return None, user_state
output = f"""Q1: {question[0]}
A1: {answer[0]}
Q2: {question[1]}
A2: {answer[1]}
Q3: {question[2]}
A3: {answer[2]}
Detailed Caption: {caption}
"""
return output, user_state
def _blend_bbox(self, img, bbox):
x1,y1,x2,y2 = bbox
mask = np.zeros_like(img)
mask[y1:y2,x1:x2,:] = 255
mask = mask.astype(np.uint8)
mask[:,:,0] = 0
mask[:,:,2] = 0
new_img_arr = img * (1 - 1/3) + mask * 1/3
new_img_arr = np.clip(new_img_arr, 0, 255).astype(np.uint8)
# print(new_img_arr.shape)
return new_img_arr
def clear_points(self,user_state:dict):
print("clear all points")
user_state["points"] = []
img = user_state.get("origin_image",None)
return img,user_state
class Seafoam(ThemeBase.Base):
def __init__(
self,
*,
primary_hue=colors.emerald,
secondary_hue=colors.blue,
neutral_hue=colors.gray,
spacing_size=sizes.spacing_md,
radius_size=sizes.radius_md,
text_size=sizes.text_lg,
font=(
fonts.GoogleFont("Quicksand"),
"ui-sans-serif",
"sans-serif",
),
font_mono=(
fonts.GoogleFont("IBM Plex Mono"),
"ui-monospace",
"monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
# body_background_fill="#D8E9EB",
body_background_fill_dark="#111111",
button_primary_background_fill="*primary_300",
button_primary_background_fill_hover="*primary_200",
button_primary_text_color="black",
button_secondary_background_fill="*secondary_300",
button_secondary_background_fill_hover="*secondary_200",
border_color_primary="#0BB9BF",
slider_color="*secondary_300",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_shadow="*shadow_drop_lg",
button_large_padding="10px",
)
css='''
#image_upload {align-items: center; max-width: 640px}
'''
def app(**kwargs):
bot = Bot()
with gr.Blocks(theme=Seafoam(), css=css) as demo:
user_state = gr.State({})
gr.HTML(
"""
<div align='center'> <h1>Dataset Browser For <a href="https://github.com/OpenGVLab/all-seeing">All-Seeing Project</h> </div>
""",
)
# gr.HTML(
# """
# <div align='center'> <h1>Dataset Browser For <p align="center"><a href="https://github.com/OpenGVLab/all-seeing"><b>All-Seeing Project</b></p></h> </div>
# <p align="center">AS-1B contains over 1 billion regions annotated with semantic tags, question-answering pairs, and detailed captions. It covers a wide range of 3.5 million common and rare concepts in the real world, and has 132.2 billion tokens that describe the concepts and their attributes.</p>
# <p align="center"><a href="https://github.com/OpenGVLab/all-seeing"><b>All-Seeing Project</b></p>
# """,
# )
with gr.Row(visible=True) as user_interface:
with gr.Column(scale=0.5, elem_id="text_input") as chat_part:
with gr.Row(visible=True) as semantic_tag:
label = gr.Textbox(show_label=True,label="Semantic Tag",interactive=False)
with gr.Row(visible=False) as question :
question = gr.Dropdown([],label="Question",interactive=True)
with gr.Row(visible=True) as answer:
answer = gr.Textbox(show_label=True,label="Detailed Annotation",interactive=False, lines=12, max_lines=12)
with gr.Column(elem_id="visual_input", scale=0.5) as img_part:
# click_img = gr.AnnotatedImage(interactive=True, brush_radius=15, elem_id="image_upload",height=400)
click_img = gr.Image(type="pil", interactive=False, brush_radius=15, elem_id="image_upload",height=392)
with gr.Row(visible=False) as btn:
select_img = gr.Slider(label="Image Index",minimum=0,maximum=len(bot.image_paths)-1,step=1,value=0)
# add_img_example = gr.Button("🖼️ Image Example", variant="primary")
clear_btn = gr.Button(value="🗑️ Clear Points", variant="primary", elem_id="pick_btn")
# save_btn = gr.Button(value="Save", variant="primary", elem_id="save_btn")
with gr.Row(visible=True) as gallery_row:
gallery = gr.Gallery(bot.gallery_show_paths ,label = "Image Gallery",columns = 4,allow_preview =False,height=385)
# add_img_example.click(bot.add_image, [user_state], [click_img,user_state]).then(
# lambda: None, None, question).then(
# lambda: None, None, label)
select_img.release(bot.add_image, [user_state,select_img], [click_img,user_state]).then(
lambda: None, None, question).then(
lambda: None, None, label)
click_img.select(bot.add_points,[user_state,],[label, click_img, user_state]).then(
bot.add_ann,[user_state],[question,user_state]).then(
lambda: None, None, question).then(
lambda: None, None, answer).then(
bot.update_all_answer,[user_state],[answer,user_state]
)
question.select(bot.update_answer,[user_state],[answer,user_state])
# pick_btn.click(lambda: gr.update(interactive=False), [], [clear_btn]).then(
# ).then(
# bot.seg_image,[user_state],[click_img,user_state]).then(
# bot.add_image,[click_img, user_state], [ user_state]).then(
# lambda: gr.update(interactive=True), [], [clear_btn])
click_img.clear(lambda: {}, None, user_state).then(
lambda: None, None, label).then(
lambda: None, None, question).then(
lambda: None, None, answer)
clear_btn.click(bot.clear_points,[user_state],[click_img,user_state]).then(
lambda: None, None, label).then(
lambda: None, None, question).then(
lambda: None, None, answer)
gallery.select(bot.add_gellary_image,[user_state,],[select_img,click_img, user_state]).then(
lambda: None, None, label).then(
lambda: None, None, question).then(
lambda: None, None, answer)
# save_btn.click(bot.save_img,[user_state],[save_btn,user_state])
demo.queue().launch(**kwargs)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--port', type=int, default=10019)
parser.add_argument('--share', action='store_true')
args = parser.parse_args()
# app(server_name="0.0.0.0", ssl_verify=False, server_port=args.port, share=args.share)
app()
# fire.Fire(app)