Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
from transformers import BlipForQuestionAnswering, AutoProcessor | |
from PIL import Image | |
import spaces | |
# Check device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load model and processor | |
model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base").to(device) | |
processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base") | |
def answer_question(image, question): | |
inputs = processor(image, question, return_tensors="pt").to(device) | |
out = model.generate(**inputs) | |
return processor.decode(out[0], skip_special_tokens=True) | |
iface = gr.Interface( | |
fn=answer_question, | |
inputs=[gr.Image(type="pil"), gr.Textbox(placeholder="Enter your question")], | |
outputs=gr.Textbox(label="Answer"), | |
title="Visual Question Answering with BLIP", | |
description="Upload an image and ask a question about its content.", | |
examples=[["beach.jpeg", "Is there a man or a woman in the image?"]], | |
) | |
iface.launch() | |