WXM2000 commited on
Commit
7b9c2ab
·
1 Parent(s): ba32768

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -0
app.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ from transformers import AutoModelForSequenceClassification,AutoTokenizer,pipeline
5
+ model = AutoModelForSequenceClassification.from_pretrained('uer/roberta-base-finetuned-jd-binary-chinese',local_files_only=True)
6
+ tokenizer = AutoTokenizer.from_pretrained('uer/roberta-base-finetuned-jd-binary-chinese',local_files_only=True)
7
+ sentiment_classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
8
+ examples=["小红正在吃一块美味的蛋糕。","小红在蛋糕里发现了一只苍蝇。"]
9
+
10
+ def classifier(text):
11
+ pred = sentiment_classifier(text)
12
+ print('pred=',pred)
13
+ pred_out = []
14
+ if pred[0]['label'][0:4] == 'posi':
15
+ dict_nega = { 'label' : '消极', 'score':1 - pred[0]['score'], }
16
+ dict_posi = {'label':'积极', 'score':pred[0]['score'],}
17
+ pred_out.append(dict_nega)
18
+ pred_out.append(dict_posi)
19
+ else:
20
+ dict_nega = {'label':'消极', 'score':pred[0]['score'],}
21
+ dict_posi = {'label':'积极', 'score':1-pred[0]['score'],}
22
+ pred_out.append(dict_nega)
23
+ pred_out.append(dict_posi)
24
+ return {p["label"]: p["score"] for p in pred_out}
25
+
26
+ demo = gr.Interface(classifier,
27
+ gr.Textbox(label="Input Text"),
28
+ gr.Label(label="Predicted Sentiment"),
29
+ examples=examples)
30
+
31
+ demo.launch()