Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
from transformers import AutoModelForSequenceClassification,AutoTokenizer,pipeline
|
5 |
+
model = AutoModelForSequenceClassification.from_pretrained('uer/roberta-base-finetuned-jd-binary-chinese',local_files_only=True)
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained('uer/roberta-base-finetuned-jd-binary-chinese',local_files_only=True)
|
7 |
+
sentiment_classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
|
8 |
+
examples=["小红正在吃一块美味的蛋糕。","小红在蛋糕里发现了一只苍蝇。"]
|
9 |
+
|
10 |
+
def classifier(text):
|
11 |
+
pred = sentiment_classifier(text)
|
12 |
+
print('pred=',pred)
|
13 |
+
pred_out = []
|
14 |
+
if pred[0]['label'][0:4] == 'posi':
|
15 |
+
dict_nega = { 'label' : '消极', 'score':1 - pred[0]['score'], }
|
16 |
+
dict_posi = {'label':'积极', 'score':pred[0]['score'],}
|
17 |
+
pred_out.append(dict_nega)
|
18 |
+
pred_out.append(dict_posi)
|
19 |
+
else:
|
20 |
+
dict_nega = {'label':'消极', 'score':pred[0]['score'],}
|
21 |
+
dict_posi = {'label':'积极', 'score':1-pred[0]['score'],}
|
22 |
+
pred_out.append(dict_nega)
|
23 |
+
pred_out.append(dict_posi)
|
24 |
+
return {p["label"]: p["score"] for p in pred_out}
|
25 |
+
|
26 |
+
demo = gr.Interface(classifier,
|
27 |
+
gr.Textbox(label="Input Text"),
|
28 |
+
gr.Label(label="Predicted Sentiment"),
|
29 |
+
examples=examples)
|
30 |
+
|
31 |
+
demo.launch()
|