WAQASCHANNA
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from transformers import pipeline
|
5 |
+
from geopy.geocoders import Nominatim
|
6 |
+
|
7 |
+
# Load Models
|
8 |
+
@st.cache_resource
|
9 |
+
def load_llama_small_model():
|
10 |
+
model_name = "meta-llama/Llama-2-7b"
|
11 |
+
generator = pipeline("text-generation", model=model_name)
|
12 |
+
return generator
|
13 |
+
|
14 |
+
@st.cache_resource
|
15 |
+
def load_llama_large_model():
|
16 |
+
model_name = "meta-llama/Llama-3.1-405b"
|
17 |
+
generator = pipeline("text-generation", model=model_name)
|
18 |
+
return generator
|
19 |
+
|
20 |
+
@st.cache_resource
|
21 |
+
def load_multimodal_model():
|
22 |
+
model_name = "google/vit-base-patch16-224"
|
23 |
+
vision_model = pipeline("image-classification", model=model_name)
|
24 |
+
return vision_model
|
25 |
+
|
26 |
+
@st.cache_resource
|
27 |
+
def load_text_classification_model():
|
28 |
+
model_name = "distilbert-base-uncased"
|
29 |
+
text_classifier = pipeline("text-classification", model=model_name)
|
30 |
+
return text_classifier
|
31 |
+
|
32 |
+
def main():
|
33 |
+
st.title("AI-Powered Telecom Solution for Underserved Areas")
|
34 |
+
st.write("This app is designed to leverage AI-powered models for optimizing telecommunication infrastructure in underserved areas.")
|
35 |
+
|
36 |
+
st.sidebar.title("Options")
|
37 |
+
option = st.sidebar.selectbox(
|
38 |
+
"Select a Functionality",
|
39 |
+
("Network Planning Assistance", "Community Content Translation", "Operational Diagnostics", "Workflow Optimization")
|
40 |
+
)
|
41 |
+
|
42 |
+
if option == "Network Planning Assistance":
|
43 |
+
st.header("Network Planning Assistance")
|
44 |
+
address = st.text_input("Enter a location to analyze network suitability:")
|
45 |
+
if st.button("Analyze Location"):
|
46 |
+
if address:
|
47 |
+
geolocator = Nominatim(user_agent="geoapiExercises")
|
48 |
+
location = geolocator.geocode(address)
|
49 |
+
if location:
|
50 |
+
st.write(f"Location found: {location.address}")
|
51 |
+
st.map(pd.DataFrame(np.array([[location.latitude, location.longitude]]), columns=['lat', 'lon']))
|
52 |
+
st.write("Using Llama models to suggest optimal network deployment...")
|
53 |
+
small_model = load_llama_small_model()
|
54 |
+
large_model = load_llama_large_model()
|
55 |
+
small_result = small_model(f"Provide initial suggestions for network deployment at {location.address}. Consider rural telecommunication needs.", max_length=100)
|
56 |
+
large_result = large_model(f"Provide detailed suggestions for network deployment at {location.address}, considering infrastructure limitations and long-term scalability.", max_length=200)
|
57 |
+
st.success("Initial Suggestions:")
|
58 |
+
st.write(small_result[0]['generated_text'])
|
59 |
+
st.success("Detailed Analysis:")
|
60 |
+
st.write(large_result[0]['generated_text'])
|
61 |
+
else:
|
62 |
+
st.error("Location not found. Please try another address.")
|
63 |
+
else:
|
64 |
+
st.error("Please enter a location to proceed.")
|
65 |
+
|
66 |
+
elif option == "Community Content Translation":
|
67 |
+
st.header("Community Content Translation Assistance")
|
68 |
+
text_to_translate = st.text_area("Enter content to translate for local communities:")
|
69 |
+
if st.button("Translate Content"):
|
70 |
+
if text_to_translate:
|
71 |
+
small_model = load_llama_small_model()
|
72 |
+
large_model = load_llama_large_model()
|
73 |
+
translation_result = small_model(f"Translate the following content into a simple language suitable for rural communities: {text_to_translate}", max_length=100)
|
74 |
+
classification_model = load_text_classification_model()
|
75 |
+
content_type = classification_model(text_to_translate)
|
76 |
+
st.success("Translated Content:")
|
77 |
+
st.write(translation_result[0]['generated_text'])
|
78 |
+
st.success("Content Type Classification:")
|
79 |
+
st.write(content_type)
|
80 |
+
else:
|
81 |
+
st.error("Please enter content to proceed.")
|
82 |
+
|
83 |
+
elif option == "Operational Diagnostics":
|
84 |
+
st.header("Operational Maintenance & Network Troubleshooting")
|
85 |
+
uploaded_file = st.file_uploader("Upload network diagnostic image (e.g., hardware photo):")
|
86 |
+
if uploaded_file is not None:
|
87 |
+
st.image(uploaded_file, caption='Uploaded Diagnostic Image', use_column_width=True)
|
88 |
+
with st.spinner("Analyzing the image..."):
|
89 |
+
vision_model = load_multimodal_model()
|
90 |
+
result = vision_model(uploaded_file)
|
91 |
+
st.success("Analysis Result:")
|
92 |
+
st.write(result)
|
93 |
+
|
94 |
+
elif option == "Workflow Optimization":
|
95 |
+
st.header("Workflow Optimization for Telecom Operations")
|
96 |
+
st.write("This feature helps optimize administrative and regulatory workflows using AI models.")
|
97 |
+
task_description = st.text_area("Enter a workflow task that needs optimization:")
|
98 |
+
if st.button("Optimize Workflow"):
|
99 |
+
if task_description:
|
100 |
+
large_model = load_llama_large_model()
|
101 |
+
result = large_model(f"Optimize the following workflow for better efficiency: {task_description}", max_length=150)
|
102 |
+
st.success("Optimized Workflow Suggestion:")
|
103 |
+
st.write(result[0]['generated_text'])
|
104 |
+
else:
|
105 |
+
st.error("Please enter a workflow task to proceed.")
|
106 |
+
|
107 |
+
if __name__ == "__main__":
|
108 |
+
main()
|