|
|
|
import logging |
|
|
|
import torch |
|
import torch.cuda.amp as amp |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
|
|
__all__ = [ |
|
'WanVAE', |
|
] |
|
|
|
CACHE_T = 2 |
|
|
|
|
|
class CausalConv3d(nn.Conv3d): |
|
""" |
|
Causal 3d convolusion. |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self._padding = (self.padding[2], self.padding[2], self.padding[1], |
|
self.padding[1], 2 * self.padding[0], 0) |
|
self.padding = (0, 0, 0) |
|
|
|
def forward(self, x, cache_x=None): |
|
padding = list(self._padding) |
|
if cache_x is not None and self._padding[4] > 0: |
|
cache_x = cache_x.to(x.device) |
|
x = torch.cat([cache_x, x], dim=2) |
|
padding[4] -= cache_x.shape[2] |
|
x = F.pad(x, padding) |
|
|
|
return super().forward(x) |
|
|
|
|
|
class RMS_norm(nn.Module): |
|
|
|
def __init__(self, dim, channel_first=True, images=True, bias=False): |
|
super().__init__() |
|
broadcastable_dims = (1, 1, 1) if not images else (1, 1) |
|
shape = (dim, *broadcastable_dims) if channel_first else (dim,) |
|
|
|
self.channel_first = channel_first |
|
self.scale = dim**0.5 |
|
self.gamma = nn.Parameter(torch.ones(shape)) |
|
self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0. |
|
|
|
def forward(self, x): |
|
return F.normalize( |
|
x, dim=(1 if self.channel_first else |
|
-1)) * self.scale * self.gamma + self.bias |
|
|
|
|
|
class Upsample(nn.Upsample): |
|
|
|
def forward(self, x): |
|
""" |
|
Fix bfloat16 support for nearest neighbor interpolation. |
|
""" |
|
return super().forward(x.float()).type_as(x) |
|
|
|
|
|
class Resample(nn.Module): |
|
|
|
def __init__(self, dim, mode): |
|
assert mode in ('none', 'upsample2d', 'upsample3d', 'downsample2d', |
|
'downsample3d') |
|
super().__init__() |
|
self.dim = dim |
|
self.mode = mode |
|
|
|
|
|
if mode == 'upsample2d': |
|
self.resample = nn.Sequential( |
|
Upsample(scale_factor=(2., 2.), mode='nearest-exact'), |
|
nn.Conv2d(dim, dim // 2, 3, padding=1)) |
|
elif mode == 'upsample3d': |
|
self.resample = nn.Sequential( |
|
Upsample(scale_factor=(2., 2.), mode='nearest-exact'), |
|
nn.Conv2d(dim, dim // 2, 3, padding=1)) |
|
self.time_conv = CausalConv3d( |
|
dim, dim * 2, (3, 1, 1), padding=(1, 0, 0)) |
|
|
|
elif mode == 'downsample2d': |
|
self.resample = nn.Sequential( |
|
nn.ZeroPad2d((0, 1, 0, 1)), |
|
nn.Conv2d(dim, dim, 3, stride=(2, 2))) |
|
elif mode == 'downsample3d': |
|
self.resample = nn.Sequential( |
|
nn.ZeroPad2d((0, 1, 0, 1)), |
|
nn.Conv2d(dim, dim, 3, stride=(2, 2))) |
|
self.time_conv = CausalConv3d( |
|
dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0)) |
|
|
|
else: |
|
self.resample = nn.Identity() |
|
|
|
def forward(self, x, feat_cache=None, feat_idx=[0]): |
|
b, c, t, h, w = x.size() |
|
if self.mode == 'upsample3d': |
|
if feat_cache is not None: |
|
idx = feat_idx[0] |
|
if feat_cache[idx] is None: |
|
feat_cache[idx] = 'Rep' |
|
feat_idx[0] += 1 |
|
else: |
|
|
|
cache_x = x[:, :, -CACHE_T:, :, :].clone() |
|
if cache_x.shape[2] < 2 and feat_cache[ |
|
idx] is not None and feat_cache[idx] != 'Rep': |
|
|
|
cache_x = torch.cat([ |
|
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( |
|
cache_x.device), cache_x |
|
], |
|
dim=2) |
|
if cache_x.shape[2] < 2 and feat_cache[ |
|
idx] is not None and feat_cache[idx] == 'Rep': |
|
cache_x = torch.cat([ |
|
torch.zeros_like(cache_x).to(cache_x.device), |
|
cache_x |
|
], |
|
dim=2) |
|
if feat_cache[idx] == 'Rep': |
|
x = self.time_conv(x) |
|
else: |
|
x = self.time_conv(x, feat_cache[idx]) |
|
feat_cache[idx] = cache_x |
|
feat_idx[0] += 1 |
|
|
|
x = x.reshape(b, 2, c, t, h, w) |
|
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), |
|
3) |
|
x = x.reshape(b, c, t * 2, h, w) |
|
t = x.shape[2] |
|
x = rearrange(x, 'b c t h w -> (b t) c h w') |
|
x = self.resample(x) |
|
x = rearrange(x, '(b t) c h w -> b c t h w', t=t) |
|
|
|
if self.mode == 'downsample3d': |
|
if feat_cache is not None: |
|
idx = feat_idx[0] |
|
if feat_cache[idx] is None: |
|
feat_cache[idx] = x.clone() |
|
feat_idx[0] += 1 |
|
else: |
|
|
|
cache_x = x[:, :, -1:, :, :].clone() |
|
|
|
|
|
|
|
|
|
x = self.time_conv( |
|
torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2)) |
|
feat_cache[idx] = cache_x |
|
feat_idx[0] += 1 |
|
return x |
|
|
|
def init_weight(self, conv): |
|
conv_weight = conv.weight |
|
nn.init.zeros_(conv_weight) |
|
c1, c2, t, h, w = conv_weight.size() |
|
one_matrix = torch.eye(c1, c2) |
|
init_matrix = one_matrix |
|
nn.init.zeros_(conv_weight) |
|
|
|
conv_weight.data[:, :, 1, 0, 0] = init_matrix |
|
conv.weight.data.copy_(conv_weight) |
|
nn.init.zeros_(conv.bias.data) |
|
|
|
def init_weight2(self, conv): |
|
conv_weight = conv.weight.data |
|
nn.init.zeros_(conv_weight) |
|
c1, c2, t, h, w = conv_weight.size() |
|
init_matrix = torch.eye(c1 // 2, c2) |
|
|
|
conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix |
|
conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix |
|
conv.weight.data.copy_(conv_weight) |
|
nn.init.zeros_(conv.bias.data) |
|
|
|
|
|
class ResidualBlock(nn.Module): |
|
|
|
def __init__(self, in_dim, out_dim, dropout=0.0): |
|
super().__init__() |
|
self.in_dim = in_dim |
|
self.out_dim = out_dim |
|
|
|
|
|
self.residual = nn.Sequential( |
|
RMS_norm(in_dim, images=False), nn.SiLU(), |
|
CausalConv3d(in_dim, out_dim, 3, padding=1), |
|
RMS_norm(out_dim, images=False), nn.SiLU(), nn.Dropout(dropout), |
|
CausalConv3d(out_dim, out_dim, 3, padding=1)) |
|
self.shortcut = CausalConv3d(in_dim, out_dim, 1) \ |
|
if in_dim != out_dim else nn.Identity() |
|
|
|
def forward(self, x, feat_cache=None, feat_idx=[0]): |
|
h = self.shortcut(x) |
|
for layer in self.residual: |
|
if isinstance(layer, CausalConv3d) and feat_cache is not None: |
|
idx = feat_idx[0] |
|
cache_x = x[:, :, -CACHE_T:, :, :].clone() |
|
if cache_x.shape[2] < 2 and feat_cache[idx] is not None: |
|
|
|
cache_x = torch.cat([ |
|
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( |
|
cache_x.device), cache_x |
|
], |
|
dim=2) |
|
x = layer(x, feat_cache[idx]) |
|
feat_cache[idx] = cache_x |
|
feat_idx[0] += 1 |
|
else: |
|
x = layer(x) |
|
return x + h |
|
|
|
|
|
class AttentionBlock(nn.Module): |
|
""" |
|
Causal self-attention with a single head. |
|
""" |
|
|
|
def __init__(self, dim): |
|
super().__init__() |
|
self.dim = dim |
|
|
|
|
|
self.norm = RMS_norm(dim) |
|
self.to_qkv = nn.Conv2d(dim, dim * 3, 1) |
|
self.proj = nn.Conv2d(dim, dim, 1) |
|
|
|
|
|
nn.init.zeros_(self.proj.weight) |
|
|
|
def forward(self, x): |
|
identity = x |
|
b, c, t, h, w = x.size() |
|
x = rearrange(x, 'b c t h w -> (b t) c h w') |
|
x = self.norm(x) |
|
|
|
q, k, v = self.to_qkv(x).reshape(b * t, 1, c * 3, |
|
-1).permute(0, 1, 3, |
|
2).contiguous().chunk( |
|
3, dim=-1) |
|
|
|
|
|
x = F.scaled_dot_product_attention( |
|
q, |
|
k, |
|
v, |
|
) |
|
x = x.squeeze(1).permute(0, 2, 1).reshape(b * t, c, h, w) |
|
|
|
|
|
x = self.proj(x) |
|
x = rearrange(x, '(b t) c h w-> b c t h w', t=t) |
|
return x + identity |
|
|
|
|
|
class Encoder3d(nn.Module): |
|
|
|
def __init__(self, |
|
dim=128, |
|
z_dim=4, |
|
dim_mult=[1, 2, 4, 4], |
|
num_res_blocks=2, |
|
attn_scales=[], |
|
temperal_downsample=[True, True, False], |
|
dropout=0.0): |
|
super().__init__() |
|
self.dim = dim |
|
self.z_dim = z_dim |
|
self.dim_mult = dim_mult |
|
self.num_res_blocks = num_res_blocks |
|
self.attn_scales = attn_scales |
|
self.temperal_downsample = temperal_downsample |
|
|
|
|
|
dims = [dim * u for u in [1] + dim_mult] |
|
scale = 1.0 |
|
|
|
|
|
self.conv1 = CausalConv3d(3, dims[0], 3, padding=1) |
|
|
|
|
|
downsamples = [] |
|
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])): |
|
|
|
for _ in range(num_res_blocks): |
|
downsamples.append(ResidualBlock(in_dim, out_dim, dropout)) |
|
if scale in attn_scales: |
|
downsamples.append(AttentionBlock(out_dim)) |
|
in_dim = out_dim |
|
|
|
|
|
if i != len(dim_mult) - 1: |
|
mode = 'downsample3d' if temperal_downsample[ |
|
i] else 'downsample2d' |
|
downsamples.append(Resample(out_dim, mode=mode)) |
|
scale /= 2.0 |
|
self.downsamples = nn.Sequential(*downsamples) |
|
|
|
|
|
self.middle = nn.Sequential( |
|
ResidualBlock(out_dim, out_dim, dropout), AttentionBlock(out_dim), |
|
ResidualBlock(out_dim, out_dim, dropout)) |
|
|
|
|
|
self.head = nn.Sequential( |
|
RMS_norm(out_dim, images=False), nn.SiLU(), |
|
CausalConv3d(out_dim, z_dim, 3, padding=1)) |
|
|
|
def forward(self, x, feat_cache=None, feat_idx=[0]): |
|
if feat_cache is not None: |
|
idx = feat_idx[0] |
|
cache_x = x[:, :, -CACHE_T:, :, :].clone() |
|
if cache_x.shape[2] < 2 and feat_cache[idx] is not None: |
|
|
|
cache_x = torch.cat([ |
|
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( |
|
cache_x.device), cache_x |
|
], |
|
dim=2) |
|
x = self.conv1(x, feat_cache[idx]) |
|
feat_cache[idx] = cache_x |
|
feat_idx[0] += 1 |
|
else: |
|
x = self.conv1(x) |
|
|
|
|
|
for layer in self.downsamples: |
|
if feat_cache is not None: |
|
x = layer(x, feat_cache, feat_idx) |
|
else: |
|
x = layer(x) |
|
|
|
|
|
for layer in self.middle: |
|
if isinstance(layer, ResidualBlock) and feat_cache is not None: |
|
x = layer(x, feat_cache, feat_idx) |
|
else: |
|
x = layer(x) |
|
|
|
|
|
for layer in self.head: |
|
if isinstance(layer, CausalConv3d) and feat_cache is not None: |
|
idx = feat_idx[0] |
|
cache_x = x[:, :, -CACHE_T:, :, :].clone() |
|
if cache_x.shape[2] < 2 and feat_cache[idx] is not None: |
|
|
|
cache_x = torch.cat([ |
|
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( |
|
cache_x.device), cache_x |
|
], |
|
dim=2) |
|
x = layer(x, feat_cache[idx]) |
|
feat_cache[idx] = cache_x |
|
feat_idx[0] += 1 |
|
else: |
|
x = layer(x) |
|
return x |
|
|
|
|
|
class Decoder3d(nn.Module): |
|
|
|
def __init__(self, |
|
dim=128, |
|
z_dim=4, |
|
dim_mult=[1, 2, 4, 4], |
|
num_res_blocks=2, |
|
attn_scales=[], |
|
temperal_upsample=[False, True, True], |
|
dropout=0.0): |
|
super().__init__() |
|
self.dim = dim |
|
self.z_dim = z_dim |
|
self.dim_mult = dim_mult |
|
self.num_res_blocks = num_res_blocks |
|
self.attn_scales = attn_scales |
|
self.temperal_upsample = temperal_upsample |
|
|
|
|
|
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]] |
|
scale = 1.0 / 2**(len(dim_mult) - 2) |
|
|
|
|
|
self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1) |
|
|
|
|
|
self.middle = nn.Sequential( |
|
ResidualBlock(dims[0], dims[0], dropout), AttentionBlock(dims[0]), |
|
ResidualBlock(dims[0], dims[0], dropout)) |
|
|
|
|
|
upsamples = [] |
|
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])): |
|
|
|
if i == 1 or i == 2 or i == 3: |
|
in_dim = in_dim // 2 |
|
for _ in range(num_res_blocks + 1): |
|
upsamples.append(ResidualBlock(in_dim, out_dim, dropout)) |
|
if scale in attn_scales: |
|
upsamples.append(AttentionBlock(out_dim)) |
|
in_dim = out_dim |
|
|
|
|
|
if i != len(dim_mult) - 1: |
|
mode = 'upsample3d' if temperal_upsample[i] else 'upsample2d' |
|
upsamples.append(Resample(out_dim, mode=mode)) |
|
scale *= 2.0 |
|
self.upsamples = nn.Sequential(*upsamples) |
|
|
|
|
|
self.head = nn.Sequential( |
|
RMS_norm(out_dim, images=False), nn.SiLU(), |
|
CausalConv3d(out_dim, 3, 3, padding=1)) |
|
|
|
def forward(self, x, feat_cache=None, feat_idx=[0]): |
|
|
|
if feat_cache is not None: |
|
idx = feat_idx[0] |
|
cache_x = x[:, :, -CACHE_T:, :, :].clone() |
|
if cache_x.shape[2] < 2 and feat_cache[idx] is not None: |
|
|
|
cache_x = torch.cat([ |
|
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( |
|
cache_x.device), cache_x |
|
], |
|
dim=2) |
|
x = self.conv1(x, feat_cache[idx]) |
|
feat_cache[idx] = cache_x |
|
feat_idx[0] += 1 |
|
else: |
|
x = self.conv1(x) |
|
|
|
|
|
for layer in self.middle: |
|
if isinstance(layer, ResidualBlock) and feat_cache is not None: |
|
x = layer(x, feat_cache, feat_idx) |
|
else: |
|
x = layer(x) |
|
|
|
|
|
for layer in self.upsamples: |
|
if feat_cache is not None: |
|
x = layer(x, feat_cache, feat_idx) |
|
else: |
|
x = layer(x) |
|
|
|
|
|
for layer in self.head: |
|
if isinstance(layer, CausalConv3d) and feat_cache is not None: |
|
idx = feat_idx[0] |
|
cache_x = x[:, :, -CACHE_T:, :, :].clone() |
|
if cache_x.shape[2] < 2 and feat_cache[idx] is not None: |
|
|
|
cache_x = torch.cat([ |
|
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( |
|
cache_x.device), cache_x |
|
], |
|
dim=2) |
|
x = layer(x, feat_cache[idx]) |
|
feat_cache[idx] = cache_x |
|
feat_idx[0] += 1 |
|
else: |
|
x = layer(x) |
|
return x |
|
|
|
|
|
def count_conv3d(model): |
|
count = 0 |
|
for m in model.modules(): |
|
if isinstance(m, CausalConv3d): |
|
count += 1 |
|
return count |
|
|
|
|
|
class WanVAE_(nn.Module): |
|
|
|
def __init__(self, |
|
dim=128, |
|
z_dim=4, |
|
dim_mult=[1, 2, 4, 4], |
|
num_res_blocks=2, |
|
attn_scales=[], |
|
temperal_downsample=[True, True, False], |
|
dropout=0.0): |
|
super().__init__() |
|
self.dim = dim |
|
self.z_dim = z_dim |
|
self.dim_mult = dim_mult |
|
self.num_res_blocks = num_res_blocks |
|
self.attn_scales = attn_scales |
|
self.temperal_downsample = temperal_downsample |
|
self.temperal_upsample = temperal_downsample[::-1] |
|
|
|
|
|
self.encoder = Encoder3d(dim, z_dim * 2, dim_mult, num_res_blocks, |
|
attn_scales, self.temperal_downsample, dropout) |
|
self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1) |
|
self.conv2 = CausalConv3d(z_dim, z_dim, 1) |
|
self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks, |
|
attn_scales, self.temperal_upsample, dropout) |
|
|
|
def forward(self, x): |
|
mu, log_var = self.encode(x) |
|
z = self.reparameterize(mu, log_var) |
|
x_recon = self.decode(z) |
|
return x_recon, mu, log_var |
|
|
|
def encode(self, x, scale): |
|
self.clear_cache() |
|
|
|
t = x.shape[2] |
|
iter_ = 1 + (t - 1) // 4 |
|
|
|
for i in range(iter_): |
|
self._enc_conv_idx = [0] |
|
if i == 0: |
|
out = self.encoder( |
|
x[:, :, :1, :, :], |
|
feat_cache=self._enc_feat_map, |
|
feat_idx=self._enc_conv_idx) |
|
else: |
|
out_ = self.encoder( |
|
x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :], |
|
feat_cache=self._enc_feat_map, |
|
feat_idx=self._enc_conv_idx) |
|
out = torch.cat([out, out_], 2) |
|
mu, log_var = self.conv1(out).chunk(2, dim=1) |
|
if isinstance(scale[0], torch.Tensor): |
|
mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view( |
|
1, self.z_dim, 1, 1, 1) |
|
else: |
|
mu = (mu - scale[0]) * scale[1] |
|
self.clear_cache() |
|
return mu |
|
|
|
def decode(self, z, scale): |
|
self.clear_cache() |
|
|
|
if isinstance(scale[0], torch.Tensor): |
|
z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view( |
|
1, self.z_dim, 1, 1, 1) |
|
else: |
|
z = z / scale[1] + scale[0] |
|
iter_ = z.shape[2] |
|
x = self.conv2(z) |
|
for i in range(iter_): |
|
self._conv_idx = [0] |
|
if i == 0: |
|
out = self.decoder( |
|
x[:, :, i:i + 1, :, :], |
|
feat_cache=self._feat_map, |
|
feat_idx=self._conv_idx) |
|
else: |
|
out_ = self.decoder( |
|
x[:, :, i:i + 1, :, :], |
|
feat_cache=self._feat_map, |
|
feat_idx=self._conv_idx) |
|
out = torch.cat([out, out_], 2) |
|
self.clear_cache() |
|
return out |
|
|
|
def reparameterize(self, mu, log_var): |
|
std = torch.exp(0.5 * log_var) |
|
eps = torch.randn_like(std) |
|
return eps * std + mu |
|
|
|
def sample(self, imgs, deterministic=False): |
|
mu, log_var = self.encode(imgs) |
|
if deterministic: |
|
return mu |
|
std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0)) |
|
return mu + std * torch.randn_like(std) |
|
|
|
def clear_cache(self): |
|
self._conv_num = count_conv3d(self.decoder) |
|
self._conv_idx = [0] |
|
self._feat_map = [None] * self._conv_num |
|
|
|
self._enc_conv_num = count_conv3d(self.encoder) |
|
self._enc_conv_idx = [0] |
|
self._enc_feat_map = [None] * self._enc_conv_num |
|
|
|
|
|
def _video_vae(pretrained_path=None, z_dim=None, device='cpu', **kwargs): |
|
""" |
|
Autoencoder3d adapted from Stable Diffusion 1.x, 2.x and XL. |
|
""" |
|
|
|
cfg = dict( |
|
dim=96, |
|
z_dim=z_dim, |
|
dim_mult=[1, 2, 4, 4], |
|
num_res_blocks=2, |
|
attn_scales=[], |
|
temperal_downsample=[False, True, True], |
|
dropout=0.0) |
|
cfg.update(**kwargs) |
|
|
|
|
|
with torch.device('meta'): |
|
model = WanVAE_(**cfg) |
|
|
|
|
|
logging.info(f'loading {pretrained_path}') |
|
model.load_state_dict( |
|
torch.load(pretrained_path, map_location=device), assign=True) |
|
|
|
return model |
|
|
|
|
|
class WanVAE: |
|
|
|
def __init__(self, |
|
z_dim=16, |
|
vae_pth='cache/vae_step_411000.pth', |
|
dtype=torch.float, |
|
device="cuda"): |
|
self.dtype = dtype |
|
self.device = device |
|
|
|
mean = [ |
|
-0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508, |
|
0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921 |
|
] |
|
std = [ |
|
2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743, |
|
3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160 |
|
] |
|
self.mean = torch.tensor(mean, dtype=dtype, device=device) |
|
self.std = torch.tensor(std, dtype=dtype, device=device) |
|
self.scale = [self.mean, 1.0 / self.std] |
|
|
|
|
|
self.model = _video_vae( |
|
pretrained_path=vae_pth, |
|
z_dim=z_dim, |
|
).eval().requires_grad_(False).to(device) |
|
|
|
def encode(self, videos): |
|
""" |
|
videos: A list of videos each with shape [C, T, H, W]. |
|
""" |
|
with amp.autocast(dtype=self.dtype): |
|
return [ |
|
self.model.encode(u.unsqueeze(0), self.scale).float().squeeze(0) |
|
for u in videos |
|
] |
|
|
|
def decode(self, zs): |
|
with amp.autocast(dtype=self.dtype): |
|
return [ |
|
self.model.decode(u.unsqueeze(0), |
|
self.scale).float().clamp_(-1, 1).squeeze(0) |
|
for u in zs |
|
] |
|
|