Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
from ultralytics import YOLO
|
4 |
+
from ultralytics.utils.plotting import Annotator
|
5 |
+
|
6 |
+
model_path = 'yolov10n_cs2.pt'
|
7 |
+
model = YOLO(model_path, task="detect")
|
8 |
+
|
9 |
+
def predict(image):
|
10 |
+
global model
|
11 |
+
results = model.predict(image, save=True)
|
12 |
+
annotator = Annotator(image)
|
13 |
+
for r in results:
|
14 |
+
boxes = r.boxes
|
15 |
+
for box in boxes:
|
16 |
+
b = box.xyxy[0]
|
17 |
+
c = box.cls
|
18 |
+
annotator.box_label(b, model.names[int(c)])
|
19 |
+
image = annotator.result()
|
20 |
+
return image
|
21 |
+
|
22 |
+
|
23 |
+
gr.Interface(
|
24 |
+
title="Detect players",
|
25 |
+
fn=predict,
|
26 |
+
inputs=[
|
27 |
+
gr.Image(type="pil", label="Load image"),
|
28 |
+
],
|
29 |
+
outputs=gr.Image(type="pil", label="Detected players"),
|
30 |
+
).launch()
|