Spaces:
Runtime error
Runtime error
import os | |
import re | |
import torch | |
from diffusion.utils.logger import get_root_logger | |
def save_checkpoint(work_dir, | |
epoch, | |
model, | |
model_ema=None, | |
optimizer=None, | |
lr_scheduler=None, | |
keep_last=False, | |
step=None, | |
): | |
os.makedirs(work_dir, exist_ok=True) | |
state_dict = dict(state_dict=model.state_dict()) | |
if model_ema is not None: | |
state_dict['state_dict_ema'] = model_ema.state_dict() | |
if optimizer is not None: | |
state_dict['optimizer'] = optimizer.state_dict() | |
if lr_scheduler is not None: | |
state_dict['scheduler'] = lr_scheduler.state_dict() | |
if epoch is not None: | |
state_dict['epoch'] = epoch | |
file_path = os.path.join(work_dir, f"epoch_{epoch}.pth") | |
if step is not None: | |
file_path = file_path.split('.pth')[0] + f"_step_{step}.pth" | |
logger = get_root_logger() | |
torch.save(state_dict, file_path) | |
logger.info(f'Saved checkpoint of epoch {epoch} to {file_path.format(epoch)}.') | |
if keep_last: | |
for i in range(epoch): | |
previous_ckgt = file_path.format(i) | |
if os.path.exists(previous_ckgt): | |
os.remove(previous_ckgt) | |
def load_checkpoint(checkpoint, | |
model, | |
model_ema=None, | |
optimizer=None, | |
lr_scheduler=None, | |
load_ema=False, | |
resume_optimizer=True, | |
resume_lr_scheduler=True, | |
max_length=120, | |
): | |
assert isinstance(checkpoint, str) | |
ckpt_file = checkpoint | |
checkpoint = torch.load(ckpt_file, map_location="cpu") | |
state_dict_keys = ['pos_embed', 'base_model.pos_embed', 'model.pos_embed'] | |
for key in state_dict_keys: | |
if key in checkpoint['state_dict']: | |
del checkpoint['state_dict'][key] | |
if 'state_dict_ema' in checkpoint and key in checkpoint['state_dict_ema']: | |
del checkpoint['state_dict_ema'][key] | |
break | |
if load_ema: | |
state_dict = checkpoint['state_dict_ema'] | |
else: | |
state_dict = checkpoint.get('state_dict', checkpoint) # to be compatible with the official checkpoint | |
null_embed = torch.load(f'output/pretrained_models/null_embed_diffusers_{max_length}token.pth', map_location='cpu') | |
state_dict['y_embedder.y_embedding'] = null_embed['uncond_prompt_embeds'][0] | |
missing, unexpect = model.load_state_dict(state_dict, strict=False) | |
if model_ema is not None: | |
model_ema.load_state_dict(checkpoint['state_dict_ema'], strict=False) | |
if optimizer is not None and resume_optimizer: | |
optimizer.load_state_dict(checkpoint['optimizer']) | |
if lr_scheduler is not None and resume_lr_scheduler: | |
lr_scheduler.load_state_dict(checkpoint['scheduler']) | |
logger = get_root_logger() | |
if optimizer is not None: | |
epoch = checkpoint.get('epoch', re.match(r'.*epoch_(\d*).*.pth', ckpt_file).group()[0]) | |
logger.info(f'Resume checkpoint of epoch {epoch} from {ckpt_file}. Load ema: {load_ema}, ' | |
f'resume optimizer: {resume_optimizer}, resume lr scheduler: {resume_lr_scheduler}.') | |
return epoch, missing, unexpect | |
logger.info(f'Load checkpoint from {ckpt_file}. Load ema: {load_ema}.') | |
return missing, unexpect | |