Spaces:
Runtime error
Runtime error
data_root = '/data/data' | |
data = dict(type='InternalData', root='images', image_list_json=['data_info.json'], transform='default_train', load_vae_feat=True, load_t5_feat=True) | |
image_size = 256 # the generated image resolution | |
train_batch_size = 32 | |
eval_batch_size = 16 | |
use_fsdp=False # if use FSDP mode | |
valid_num=0 # take as valid aspect-ratio when sample number >= valid_num | |
fp32_attention = True | |
# model setting | |
model = 'PixArt_XL_2' | |
aspect_ratio_type = None # base aspect ratio [ASPECT_RATIO_512 or ASPECT_RATIO_256] | |
multi_scale = False # if use multiscale dataset model training | |
pe_interpolation = 1.0 # positional embedding interpolation | |
# qk norm | |
qk_norm = False | |
# kv token compression | |
kv_compress = False | |
kv_compress_config = { | |
'sampling': None, | |
'scale_factor': 1, | |
'kv_compress_layer': [], | |
} | |
# training setting | |
num_workers=4 | |
train_sampling_steps = 1000 | |
visualize=False | |
eval_sampling_steps = 250 | |
model_max_length = 120 | |
lora_rank = 4 | |
num_epochs = 80 | |
gradient_accumulation_steps = 1 | |
grad_checkpointing = False | |
gradient_clip = 1.0 | |
gc_step = 1 | |
auto_lr = dict(rule='sqrt') | |
# we use different weight decay with the official implementation since it results better result | |
optimizer = dict(type='AdamW', lr=1e-4, weight_decay=3e-2, eps=1e-10) | |
lr_schedule = 'constant' | |
lr_schedule_args = dict(num_warmup_steps=500) | |
save_image_epochs = 1 | |
save_model_epochs = 1 | |
save_model_steps=1000000 | |
sample_posterior = True | |
mixed_precision = 'fp16' | |
scale_factor = 0.18215 # ldm vae: 0.18215; sdxl vae: 0.13025 | |
ema_rate = 0.9999 | |
tensorboard_mox_interval = 50 | |
log_interval = 50 | |
cfg_scale = 4 | |
mask_type='null' | |
num_group_tokens=0 | |
mask_loss_coef=0. | |
load_mask_index=False # load prepared mask_type index | |
# load model settings | |
vae_pretrained = "/cache/pretrained_models/sd-vae-ft-ema" | |
load_from = None | |
resume_from = dict(checkpoint=None, load_ema=False, resume_optimizer=True, resume_lr_scheduler=True) | |
snr_loss=False | |
real_prompt_ratio = 1.0 | |
# classifier free guidance | |
class_dropout_prob = 0.1 | |
# work dir settings | |
work_dir = '/cache/exps/' | |
s3_work_dir = None | |
micro_condition = False | |
seed = 43 | |
skip_step=0 | |
# LCM | |
loss_type = 'huber' | |
huber_c = 0.001 | |
num_ddim_timesteps=50 | |
w_max = 15.0 | |
w_min = 3.0 | |
ema_decay = 0.95 | |