File size: 1,906 Bytes
245a622
 
 
 
 
 
 
 
 
771c358
 
 
 
 
 
 
 
 
 
db18622
 
 
 
 
 
 
771c358
 
 
aec794e
 
44f4669
a030c57
8d8eb66
44f4669
771c358
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
title: README
emoji: πŸ“ˆ
colorFrom: green
colorTo: red
sdk: static
pinned: false
---

# VisualCloze: A Universal Image Generation Framework via Visual In-Context Learning
    
<div align="center">
  
[[Paper](https://arxiv.org/abs/2504.07960)] &emsp; [[Project Page](https://visualcloze.github.io/)] &emsp; [[Github](https://github.com/lzyhha/VisualCloze)]

</div>

<div align="center">

[[πŸ€— Online Demo](https://huggingface.co/spaces/VisualCloze/VisualCloze)] &emsp; [[πŸ€— Dataset Card](https://huggingface.co/datasets/VisualCloze/Graph200K)]

</div>

<div align="center">
  
[[πŸ€— Model Card (<strong><span style="color:hotpink">Diffusers</span></strong>)](https://huggingface.co/VisualCloze/VisualClozePipeline-384)] &emsp; [[πŸ€— Model Card (<strong><span style="color:hotpink">LoRA</span></strong>)](https://huggingface.co/VisualCloze/VisualCloze/)]

</div>

If you find VisualCloze is helpful, please consider to star ⭐ the [<strong><span style="color:hotpink">Github Repo</span></strong>](https://github.com/lzyhha/VisualCloze). Thanks!

## πŸ“° News
- [2025-4-21] πŸ‘‹πŸ‘‹πŸ‘‹ We have implemented a version of [diffusers](https://github.com/lzyhha/diffusers/tree/main/src/diffusers/pipelines/visualcloze) that makes it easier to use the model through **pipelines** of the diffusers. For usage guidance, please refer to the [Model Card](https://huggingface.co/VisualCloze/VisualClozePipeline-384).

## 🌠 Key Features

An in-context learning based universal image generation framework. 

1. Support various in-domain tasks.
2. Generalize to <strong><span style="color:hotpink"> unseen tasks</span></strong> through in-context learning. 
3. Unify multiple tasks into one step and generate both target image and intermediate results. 
4. Support reverse-engineering a set of conditions from a target image.

πŸ”₯ Examples are shown in the [project page](https://visualcloze.github.io/).