|
from stock_data_loader import StockDataLoader
|
|
import streamlit as st
|
|
import pandas as pd
|
|
import yfinance as yf
|
|
from datetime import datetime
|
|
from plots import Plots, StockChart
|
|
|
|
class StockDashboard:
|
|
def __init__(self):
|
|
self.tickers = ['NVDA', 'AAPL', 'GOOGL', 'MSFT', 'AMZN']
|
|
self.period_map = {'all': 'max','1m': '1mo', '6m': '6mo', '1y': '1y'}
|
|
|
|
def render_sidebar(self):
|
|
st.sidebar.header("Choose your filter:")
|
|
self.ticker = st.sidebar.selectbox('Choose Ticker', options=self.tickers, help='Select a ticker')
|
|
self.selected_range = st.sidebar.selectbox('Select Period', options=list(self.period_map.keys()))
|
|
|
|
def load_data(self):
|
|
self.yf_data = yf.Ticker(self.ticker)
|
|
self.df_history = self.yf_data.history(period=self.period_map[self.selected_range])
|
|
self.current_price = self.yf_data.info.get('currentPrice', 'N/A')
|
|
self.previous_close = self.yf_data.info.get('previousClose', 'N/A')
|
|
|
|
def display_header(self):
|
|
company_name = self.yf_data.info['shortName']
|
|
symbol = self.yf_data.info['symbol']
|
|
st.subheader(f'{company_name} ({symbol}) 💰')
|
|
st.divider()
|
|
if self.current_price != 'N/A' and self.previous_close != 'N/A':
|
|
price_change = self.current_price - self.previous_close
|
|
price_change_ratio = (abs(price_change) / self.previous_close * 100)
|
|
price_change_direction = "+" if price_change > 0 else "-"
|
|
st.metric(label='Current Price', value=f"{self.current_price:.2f}",
|
|
delta=f"{price_change:.2f} ({price_change_direction}{price_change_ratio:.2f}%)")
|
|
|
|
def plot_data(self):
|
|
chart = StockChart(self.df_history)
|
|
chart.add_price_chart()
|
|
chart.add_oversold_overbought_lines()
|
|
chart.add_volume_chart()
|
|
chart.render_chart()
|
|
|
|
def run(self):
|
|
st.write("--------------------------------------------")
|
|
self.render_sidebar()
|
|
self.load_data()
|
|
self.display_header()
|
|
self.plot_data()
|
|
|
|
|
|
|