Orient-Anything / app.py
zhang-ziang
image post resize and light refine
864becb
raw
history blame
4.29 kB
import gradio as gr
from paths import *
import numpy as np
from vision_tower import DINOv2_MLP
from transformers import AutoImageProcessor
import torch
import os
from PIL import Image
import torch.nn.functional as F
from utils import *
from huggingface_hub import hf_hub_download
ckpt_path = hf_hub_download(repo_id="Viglong/OriNet", filename="celarge/dino_weight.pt", repo_type="model", cache_dir='./', resume_download=True)
print(ckpt_path)
save_path = './'
device = 'cpu'
dino = DINOv2_MLP(
dino_mode = 'large',
in_dim = 1024,
out_dim = 360+180+60+2,
evaluate = True,
mask_dino = False,
frozen_back = False
).to(device)
dino.eval()
print('model create')
dino.load_state_dict(torch.load(ckpt_path, map_location='cpu'))
print('weight loaded')
val_preprocess = AutoImageProcessor.from_pretrained(DINO_LARGE, cache_dir='./')
def get_3angle(image):
# image = Image.open(image_path).convert('RGB')
image_inputs = val_preprocess(images = image)
image_inputs['pixel_values'] = torch.from_numpy(np.array(image_inputs['pixel_values'])).to(device)
with torch.no_grad():
dino_pred = dino(image_inputs)
gaus_ax_pred = torch.argmax(dino_pred[:, 0:360], dim=-1)
gaus_pl_pred = torch.argmax(dino_pred[:, 360:360+180], dim=-1)
gaus_ro_pred = torch.argmax(dino_pred[:, 360+180:360+180+60], dim=-1)
confidence = F.softmax(dino_pred[:, -2:], dim=-1)[0][0]
angles = torch.zeros(4)
angles[0] = gaus_ax_pred
angles[1] = gaus_pl_pred - 90
angles[2] = gaus_ro_pred - 30
angles[3] = confidence
return angles
def get_3angle_infer_aug(origin_img, rm_bkg_img):
# image = Image.open(image_path).convert('RGB')
image = get_crop_images(origin_img, num=3) + get_crop_images(rm_bkg_img, num=3)
image_inputs = val_preprocess(images = image)
image_inputs['pixel_values'] = torch.from_numpy(np.array(image_inputs['pixel_values'])).to(device)
with torch.no_grad():
dino_pred = dino(image_inputs)
gaus_ax_pred = torch.argmax(dino_pred[:, 0:360], dim=-1).to(torch.float32)
gaus_pl_pred = torch.argmax(dino_pred[:, 360:360+180], dim=-1).to(torch.float32)
gaus_ro_pred = torch.argmax(dino_pred[:, 360+180:360+180+60], dim=-1).to(torch.float32)
gaus_ax_pred = remove_outliers_and_average_circular(gaus_ax_pred)
gaus_pl_pred = remove_outliers_and_average(gaus_pl_pred)
gaus_ro_pred = remove_outliers_and_average(gaus_ro_pred)
confidence = torch.mean(F.softmax(dino_pred[:, -2:], dim=-1), dim=0)[0]
angles = torch.zeros(4)
angles[0] = gaus_ax_pred
angles[1] = gaus_pl_pred - 90
angles[2] = gaus_ro_pred - 30
angles[3] = confidence
return angles
def infer_func(img, do_rm_bkg, do_infer_aug):
origin_img = Image.fromarray(img)
if do_infer_aug:
rm_bkg_img = background_preprocess(origin_img, True)
angles = get_3angle_infer_aug(origin_img, rm_bkg_img)
else:
rm_bkg_img = background_preprocess(origin_img, do_rm_bkg)
angles = get_3angle(rm_bkg_img)
phi = np.radians(angles[0])
theta = np.radians(angles[1])
gamma = angles[2]
render_axis = render_3D_axis(phi, theta, gamma)
res_img = overlay_images_with_scaling(render_axis, rm_bkg_img)
# axis_model = "axis.obj"
return [res_img, round(float(angles[0]), 2), round(float(angles[1]), 2), round(float(angles[2]), 2), round(float(angles[3]), 2)]
server = gr.Interface(
flagging_mode='never',
fn=infer_func,
inputs=[
gr.Image(height=512, width=512, label="upload your image"),
gr.Checkbox(label="Remove Background", value=True),
gr.Checkbox(label="Inference time augmentation", value=False)
],
outputs=[
gr.Image(height=512, width=512, label="result image"),
# gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model"),
gr.Textbox(lines=1, label='Azimuth(0~360°)'),
gr.Textbox(lines=1, label='Polar(-90~90°)'),
gr.Textbox(lines=1, label='Rotation(-90~90°)'),
gr.Textbox(lines=1, label='Confidence(0~1)')
]
)
server.launch()