File size: 21,608 Bytes
028934b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "lcW6UWldWUMp"
      },
      "source": [
        "# Open Source RAG - Leveraging Hugging Face Endpoints through LangChain\n",
        "\n",
        "In the following notebook we will dive into the world of Open Source models hosted on Hugging Face's [inference endpoints](https://ui.endpoints.huggingface.co/).\n",
        "\n",
        "The notebook will be broken into the following parts:\n",
        "\n",
        "- 🤝 Breakout Room #2:\n",
        "  1. Install required libraries\n",
        "  2. Set Environment Variables\n",
        "  3. Creating LangChain components powered by the endpoints\n",
        "  4. Creating a simple RAG pipeline with [LangChain v0.2.0](https://blog.langchain.dev/langchain-v02-leap-to-stability/)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "-spIWt2J3Quk"
      },
      "source": [
        "## Task 1: Install required libraries\n",
        "\n",
        "Now we've got to get our required libraries!\n",
        "\n",
        "We'll start with our `langchain` and `huggingface` dependencies.\n",
        "\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 1,
      "metadata": {
        "id": "EwGLnp31jXJj"
      },
      "outputs": [],
      "source": [
        "!pip install -qU langchain-huggingface langchain-community faiss-cpu"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "SpZTBLwK3TIz"
      },
      "source": [
        "## Task 2: Set Environment Variables\n",
        "\n",
        "We'll need to set our `HF_TOKEN` so that we can send requests to our protected API endpoint.\n",
        "\n",
        "We'll also set-up our OpenAI API key, which we'll leverage later.\n",
        "\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 2,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "NspG8I0XlFTt",
        "outputId": "edbf992c-97c0-46b1-9b69-40651a5e60d1"
      },
      "outputs": [],
      "source": [
        "import os\n",
        "import getpass\n",
        "\n",
        "os.environ[\"HF_TOKEN\"] = getpass.getpass(\"HuggingFace Write Token: \")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "QMru14VBZAtw"
      },
      "source": [
        "## Task 3: Creating LangChain components powered by the endpoints\n",
        "\n",
        "We're going to wrap our endpoints in LangChain components in order to leverage them, thanks to LCEL, as we would any other LCEL component!"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "TGooehdzcmPb"
      },
      "source": [
        "### HuggingFaceEndpoint for LLM\n",
        "\n",
        "We can use the `HuggingFaceEndpoint` found [here](https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/llms/huggingface_endpoint.py) to power our chain - let's look at how we would implement it."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 3,
      "metadata": {
        "id": "N7u2Tu1FsURh"
      },
      "outputs": [],
      "source": [
        "YOUR_LLM_ENDPOINT_URL = \"https://ta8oebbz7gg0766a.us-east-1.aws.endpoints.huggingface.cloud\""
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 4,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "L3Cz6Mrnt2ku",
        "outputId": "f23f611f-5f08-4332-a74c-5b8d8311d185"
      },
      "outputs": [
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "/opt/homebrew/anaconda3/envs/llmops/lib/python3.12/site-packages/langchain_core/_api/deprecation.py:139: LangChainDeprecationWarning: The class `HuggingFaceEndpoint` was deprecated in LangChain 0.0.37 and will be removed in 0.3. An updated version of the class exists in the langchain-huggingface package and should be used instead. To use it run `pip install -U langchain-huggingface` and import as `from langchain_huggingface import HuggingFaceEndpoint`.\n",
            "  warn_deprecated(\n",
            "/opt/homebrew/anaconda3/envs/llmops/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
            "  from .autonotebook import tqdm as notebook_tqdm\n"
          ]
        },
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.\n",
            "Token is valid (permission: write).\n",
            "Your token has been saved to /Users/maraka/.cache/huggingface/token\n",
            "Login successful\n"
          ]
        }
      ],
      "source": [
        "from langchain_community.llms import HuggingFaceEndpoint\n",
        "\n",
        "hf_llm = HuggingFaceEndpoint(\n",
        "    endpoint_url=f\"{YOUR_LLM_ENDPOINT_URL}\",\n",
        "    max_new_tokens=512,\n",
        "    top_k=10,\n",
        "    top_p=0.95,\n",
        "    typical_p=0.95,\n",
        "    temperature=0.01,\n",
        "    repetition_penalty=1.03,\n",
        "    huggingfacehub_api_token=os.environ[\"HF_TOKEN\"]\n",
        ")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "fun4XrRxZK9n"
      },
      "source": [
        "Now we can use our endpoint like we would any other LLM!"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 5,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 127
        },
        "id": "OFAbFT91Z8QV",
        "outputId": "588714ad-da28-4330-801b-7121b6f17ccf"
      },
      "outputs": [
        {
          "data": {
            "text/plain": [
              "\" I hope you're having a great day! I just wanted to reach out and say hello. I've been thinking about you lately and wanted to see how you're doing. Is everything going well? Do you have any new updates or news you'd like to share? I'm always here to listen and support you in any way I can. Take care and talk to you soon!\\nI hope this message finds you well. I was just thinking about you and wanted to say hello. How have you been? Have you been up to anything exciting or new? I'd love to hear about it. If you have any time, I'd love to catch up and chat. Let me know if that sounds good to you.\\nI hope you're doing well. I was just thinking about you and wanted to reach out. It's been a while since we last spoke, and I was wondering how you've been. Have you been up to anything new or exciting? I'd love to hear about it. If you have some time, I'd love to catch up and chat. Let me know if that sounds good to you.\\nI hope you're doing well. I was just thinking about you and wanted to say hello. I know it's been a while since we last spoke, but I've been thinking about you and wanted to reach out. How have you been? Have you been up to anything new or exciting? I'd love to hear about it. If you have some time, I'd love to catch up and chat. Let me know if that sounds good to you.\\nI hope you're doing well. I was just thinking about you and wanted to say hello. I know it's been a while since we last spoke, but I've been thinking about you and wanted to reach out. How have you been? Have you been up to anything new or exciting? I'd love to hear about it. If you have some time, I'd love to catch up and chat. Let me know if that sounds good to you.\\nI hope you're doing well. I was just thinking about you and wanted to say hello. I know it's been a while since we last spoke, but I've been thinking about you and wanted to reach out. How have you been? Have you been up to anything new or exciting? I'd love to hear about it. If you have some time, I'd love to catch up and chat. Let me know if that sounds good to you.\\nI hope you're doing well. I was just\""
            ]
          },
          "execution_count": 5,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "hf_llm.invoke(\"Hello, how are you?\")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ngH3fhw4aQ8T"
      },
      "source": [
        "Now we can add a RAG-style prompt using Llama 3 Instruct's prompt templating!"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 6,
      "metadata": {
        "id": "zdvv4JmkzEtj"
      },
      "outputs": [],
      "source": [
        "from langchain_core.prompts import PromptTemplate\n",
        "\n",
        "RAG_PROMPT_TEMPLATE = \"\"\"\\\n",
        "<|start_header_id|>system<|end_header_id|>\n",
        "You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context, say you don't know.<|eot_id|>\n",
        "\n",
        "<|start_header_id|>user<|end_header_id|>\n",
        "User Query:\n",
        "{query}\n",
        "\n",
        "Context:\n",
        "{context}<|eot_id|>\n",
        "\n",
        "<|start_header_id|>assistant<|end_header_id|>\n",
        "\"\"\"\n",
        "\n",
        "rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Oe0Qrzn4adzh"
      },
      "source": [
        "Let's create a simple LCEL chain using our prompt template Runnable and our LLM Runnable."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 7,
      "metadata": {
        "id": "CE4djpxM0-Fg"
      },
      "outputs": [],
      "source": [
        "rag_chain = rag_prompt | hf_llm"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 8,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 36
        },
        "id": "PNwrLXqDxHDY",
        "outputId": "f6803286-1aa5-488a-eea9-8bece68da7f5"
      },
      "outputs": [
        {
          "data": {
            "text/plain": [
              "'According to the context, Carl is 40 years old.'"
            ]
          },
          "execution_count": 8,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "rag_chain.invoke({\"query\" : \"Who old is Carl?\", \"context\" : \"Carl is a sweet dude, he's 40.\"})"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "emGw4-66aBfa"
      },
      "source": [
        "### HuggingFaceInferenceAPIEmbeddings\n",
        "\n",
        "Now we can leverage the `HuggingFaceInferenceAPIEmbeddings` module in LangChain to connect to our Hugging Face Inference Endpoint hosted embedding model."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 9,
      "metadata": {
        "id": "n9Q7e4Gnwe_C"
      },
      "outputs": [],
      "source": [
        "from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings\n",
        "\n",
        "YOUR_EMBED_MODEL_URL = \"https://ropgl65i14toxmih.us-east-1.aws.endpoints.huggingface.cloud\"\n",
        "\n",
        "hf_embeddings = HuggingFaceEndpointEmbeddings(\n",
        "    model=f\"{YOUR_EMBED_MODEL_URL}\",\n",
        "    task=\"feature-extraction\",\n",
        "    huggingfacehub_api_token=os.environ[\"HF_TOKEN\"],\n",
        ")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "YXYRBqbBayWb"
      },
      "source": [
        "Let's build a simple cosine-similarity function to verify our endpoint is working as expected."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "lOP6LKr74RG8"
      },
      "outputs": [],
      "source": [
        "import numpy as np\n",
        "from numpy.linalg import norm\n",
        "\n",
        "def cosine_similarity(phrase_1, phrase_2):\n",
        "  vec_1 = hf_embeddings.embed_documents([phrase_1])[0]\n",
        "  vec2_2 = hf_embeddings.embed_documents([phrase_2])[0]\n",
        "  return np.dot(vec_1, vec2_2) / (norm(vec_1) * norm(vec2_2))"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "uGZNhxF2bVIr"
      },
      "source": [
        "Let's try a few examples below!"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "5o_cqEZ34f15",
        "outputId": "d3eb4933-8842-4278-fe48-2dc15e430b60"
      },
      "outputs": [
        {
          "data": {
            "text/plain": [
              "0.8903063446222079"
            ]
          },
          "execution_count": 44,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "cosine_similarity(\"I love my fluffy dog!\", \"I adore this furry puppy!\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "R1nsAV1n4w4a",
        "outputId": "db53d783-4c87-404f-de67-fc1d01583e68"
      },
      "outputs": [
        {
          "data": {
            "text/plain": [
              "0.743020791930313"
            ]
          },
          "execution_count": 48,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "cosine_similarity(\"I love my fluffy dog!\", \"Eating pizza is the worst! Yuck!\")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "iiz6vKMlbbP4"
      },
      "source": [
        "## Task 4: Preparing Data!\n",
        "\n",
        "We'll start by loading some data from GitHub (Paul Graham's Essays) and then move to chunking them into manageable pieces!\n",
        "\n",
        "First - let's grab the repository where the files live."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "AkuzZben5Eqp",
        "outputId": "eb8d39ae-fd70-4691-ddaa-1f8aa15f1c19"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Cloning into 'paul-graham-to-kindle'...\n",
            "remote: Enumerating objects: 36, done.\u001b[K\n",
            "remote: Counting objects: 100% (36/36), done.\u001b[K\n",
            "remote: Compressing objects: 100% (33/33), done.\u001b[K\n",
            "remote: Total 36 (delta 3), reused 31 (delta 1), pack-reused 0\u001b[K\n",
            "Receiving objects: 100% (36/36), 2.35 MiB | 7.13 MiB/s, done.\n",
            "Resolving deltas: 100% (3/3), done.\n"
          ]
        }
      ],
      "source": [
        "!git clone https://github.com/dbredvick/paul-graham-to-kindle.git"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "8prMk6R0bsYd"
      },
      "source": [
        "Next - we can load them using LangChain!"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 106,
      "metadata": {
        "id": "K155zM7e53lt"
      },
      "outputs": [],
      "source": [
        "from langchain_community.document_loaders import TextLoader\n",
        "\n",
        "document_loader = TextLoader(\"./paul-graham-to-kindle/paul_graham_essays.txt\")\n",
        "documents = document_loader.load()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "5wYfo6_0bwVc"
      },
      "source": [
        "Now, let's split them into 1000 character pieces."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 108,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "w-Gx_0iL6Ikc",
        "outputId": "4cd1de4f-8a7d-4727-dc92-0ce3d321a82f"
      },
      "outputs": [
        {
          "data": {
            "text/plain": [
              "4265"
            ]
          },
          "execution_count": 108,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
        "\n",
        "text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=30)\n",
        "split_documents = text_splitter.split_documents(documents)\n",
        "len(split_documents)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "d5HrkDhTb4i_"
      },
      "source": [
        "Just the same as we would with OpenAI's embeddings model - we can instantiate our `FAISS` vector store with our documents and our `HuggingFaceEmbeddings` model!\n",
        "\n",
        "We'll need to take a few extra steps, though, due to a few limitations of the endpoint/FAISS.\n",
        "\n",
        "We'll start by embeddings our documents in batches of `32`.\n",
        "\n",
        "> NOTE: This process might take a while depending on the compute you assigned your embedding endpoint!"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 110,
      "metadata": {
        "id": "ucghQgRp6YXr"
      },
      "outputs": [],
      "source": [
        "from langchain_community.vectorstores import FAISS\n",
        "\n",
        "for i in range(0, len(split_documents), 32):\n",
        "  if i == 0:\n",
        "    vectorstore = FAISS.from_documents(split_documents[i:i+32], hf_embeddings)\n",
        "    continue\n",
        "  vectorstore.add_documents(split_documents[i:i+32])"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "q07ZUp6Db_AO"
      },
      "source": [
        "Next, we set up FAISS as a retriever."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 111,
      "metadata": {
        "id": "fXr-yrAq7h8V"
      },
      "outputs": [],
      "source": [
        "hf_retriever = vectorstore.as_retriever()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "sYrW6FRecO7U"
      },
      "source": [
        "## Task 5: Simple LCEL RAG Chain\n",
        "\n",
        "Now we can set up our LCEL RAG chain!\n",
        "\n",
        "> NOTE: We're not returning context for this example, and only returning the text output from the LLM."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 112,
      "metadata": {
        "id": "ffIzIlct8ISb"
      },
      "outputs": [],
      "source": [
        "from operator import itemgetter\n",
        "from langchain.schema.output_parser import StrOutputParser\n",
        "from langchain.schema.runnable import RunnablePassthrough\n",
        "\n",
        "lcel_rag_chain = {\"context\": itemgetter(\"query\") | hf_retriever, \"query\": itemgetter(\"query\")}| rag_prompt | hf_llm"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 114,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 127
        },
        "id": "HOQfkEgb8nPH",
        "outputId": "92601728-d001-43e2-e543-e714d66f4f4e"
      },
      "outputs": [
        {
          "data": {
            "application/vnd.google.colaboratory.intrinsic+json": {
              "type": "string"
            },
            "text/plain": [
              "\"Based on the provided context, it seems that Paul Graham, the author, is discussing the shortcomings of Silicon Valley and suggesting ways to improve it. He mentions that the best part of Silicon Valley is not the physical buildings, but the people who make it Silicon Valley.\\n\\nHowever, he also criticizes the current state of Silicon Valley, saying that it's too far from San Francisco, has poor public transportation, and is plagued by strip development. He suggests that to create a better Silicon Valley, one should focus on designing a town that prioritizes public transportation, walkability, and bikeability, rather than car-centric development.\\n\\nSo, in summary, the best part of Silicon Valley, according to Paul Graham, is the people, but the area itself has many weaknesses that need to be addressed to make it a more desirable place for startups and innovators.\""
            ]
          },
          "execution_count": 114,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "lcel_rag_chain.invoke({\"query\" : \"What is the best part of Silicon Valley?\"})"
      ]
    }
  ],
  "metadata": {
    "colab": {
      "provenance": [],
      "toc_visible": true
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.12.3"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}