Fffc / app.py
ucancode's picture
output image ์ˆ˜์ •ํ•˜๊ธฐ
7aa2615
raw
history blame
2.41 kB
import gradio as gr
import cv2
import numpy as np
import insightface
from insightface.app import FaceAnalysis
import datetime
import os
from PIL import Image
def faceswapper(user_image, result_image, username="test"):
output_folder = 'outputs'
# Convert PIL images to NumPy arrays for processing
guest_img = np.array(user_image)
result_img = np.array(result_image)
# Convert RGB (PIL) to BGR (OpenCV)
guest_img = guest_img[:, :, ::-1]
result_img = result_img[:, :, ::-1]
# Initialize the FaceAnalysis app
app = FaceAnalysis(name='buffalo_l')
app.prepare(ctx_id=0, det_size=(640, 640))
# Initialize the face swapper model
swapper = insightface.model_zoo.get_model('inswapper_128.onnx', download=False, download_zip=False)
# Detect face in the guest image
guest_faces = app.get(guest_img)
guest_face = guest_faces[0]
# Detect faces in the result image
faces = app.get(result_img)
# Perform face swapping
for face in faces:
result_img = swapper.get(result_img, face, guest_face, paste_back=True)
# Save the result in the specified output folder
if not os.path.exists(output_folder):
os.makedirs(output_folder)
current_time = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
output_path = os.path.join(output_folder, f'{username}_swapped_face_{current_time}.jpg')
cv2.imwrite(output_path, result_img)
# Convert the final image from BGR to RGB before returning
result_img = cv2.cvtColor(result_img, cv2.COLOR_BGR2RGB)
# Convert back to PIL image
result_img_pil = Image.fromarray(result_img)
original_size = result_image.size
result_img_pil = result_img_pil.resize(original_size, Image.Resampling.LANCZOS)
return result_img_pil
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
name = gr.Textbox(label="์ด๋ฆ„(ํŒŒ์ผ์ €์žฅ์šฉ)")
with gr.Row():
user_image_input = gr.Image(type="pil", label="์œ ์ €์‚ฌ์ง„(์–ผ๊ตด์ถ”์ถœ)", width=512, height=512)
result_image_input = gr.Image(type="pil", label="๊ฒฐ๊ณผ๋ฌผ ์‚ฌ์ง„", width=512, height=512)
swap_btn = gr.Button("Swap Faces")
output_image = gr.Image(label="ํ•ฉ์„ฑ ํ›„ ์‚ฌ์ง„", width=512, height=512)
swap_btn.click(fn=faceswapper, inputs=[user_image_input, result_image_input, name], outputs=output_image)
demo.launch(debug=True)