Spaces:
Runtime error
Runtime error
Delete backend.py
Browse files- backend.py +0 -395
backend.py
DELETED
@@ -1,395 +0,0 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
6 |
-
|
7 |
-
"""
|
8 |
-
Sample new images from a pre-trained DiT.
|
9 |
-
"""
|
10 |
-
import os
|
11 |
-
import sys
|
12 |
-
import math
|
13 |
-
try:
|
14 |
-
import utils
|
15 |
-
|
16 |
-
from diffusion import create_diffusion
|
17 |
-
from download import find_model
|
18 |
-
except:
|
19 |
-
sys.path.append(os.path.split(sys.path[0])[0])
|
20 |
-
import utils
|
21 |
-
from diffusion import create_diffusion
|
22 |
-
from download import find_model
|
23 |
-
|
24 |
-
import torch
|
25 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
26 |
-
torch.backends.cudnn.allow_tf32 = True
|
27 |
-
import argparse
|
28 |
-
import torchvision
|
29 |
-
|
30 |
-
from einops import rearrange
|
31 |
-
from models import get_models
|
32 |
-
from torchvision.utils import save_image
|
33 |
-
from diffusers.models import AutoencoderKL
|
34 |
-
from models.clip import TextEmbedder
|
35 |
-
from omegaconf import OmegaConf
|
36 |
-
from PIL import Image
|
37 |
-
import numpy as np
|
38 |
-
from torchvision import transforms
|
39 |
-
sys.path.append("..")
|
40 |
-
from datasets import video_transforms
|
41 |
-
from decord import VideoReader
|
42 |
-
from utils import mask_generation_before
|
43 |
-
from natsort import natsorted
|
44 |
-
from diffusers.utils.import_utils import is_xformers_available
|
45 |
-
from tca.tca_transform import tca_transform_model
|
46 |
-
|
47 |
-
|
48 |
-
def get_input(args):
|
49 |
-
input_path = args.input_path
|
50 |
-
transform_video = transforms.Compose([
|
51 |
-
video_transforms.ToTensorVideo(), # TCHW
|
52 |
-
video_transforms.ResizeVideo((args.image_h, args.image_w)),
|
53 |
-
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
54 |
-
])
|
55 |
-
temporal_sample_func = video_transforms.TemporalRandomCrop(args.num_frames * args.frame_interval)
|
56 |
-
if input_path is not None:
|
57 |
-
print(f'loading video from {input_path}')
|
58 |
-
if os.path.isdir(input_path):
|
59 |
-
file_list = os.listdir(input_path)
|
60 |
-
video_frames = []
|
61 |
-
if args.mask_type.startswith('onelast'):
|
62 |
-
num = int(args.mask_type.split('onelast')[-1])
|
63 |
-
# get first and last frame
|
64 |
-
first_frame_path = os.path.join(input_path, natsorted(file_list)[0])
|
65 |
-
last_frame_path = os.path.join(input_path, natsorted(file_list)[-1])
|
66 |
-
first_frame = torch.as_tensor(np.array(Image.open(first_frame_path).convert("RGB"), dtype=np.uint8, copy=True)).unsqueeze(0)
|
67 |
-
last_frame = torch.as_tensor(np.array(Image.open(last_frame_path).convert("RGB"), dtype=np.uint8, copy=True)).unsqueeze(0)
|
68 |
-
for i in range(num):
|
69 |
-
video_frames.append(first_frame)
|
70 |
-
# add zeros to frames
|
71 |
-
num_zeros = args.num_frames-2*num
|
72 |
-
for i in range(num_zeros):
|
73 |
-
zeros = torch.zeros_like(first_frame)
|
74 |
-
video_frames.append(zeros)
|
75 |
-
for i in range(num):
|
76 |
-
video_frames.append(last_frame)
|
77 |
-
n = 0
|
78 |
-
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w
|
79 |
-
video_frames = transform_video(video_frames)
|
80 |
-
elif args.mask_type.startswith('video_onelast'):
|
81 |
-
num = int(args.mask_type.split('onelast')[-1])
|
82 |
-
first_frame_path = os.path.join(input_path, natsorted(file_list)[0])
|
83 |
-
last_frame_path = os.path.join(input_path, natsorted(file_list)[-1])
|
84 |
-
video_reader_first = VideoReader(first_frame_path)
|
85 |
-
video_reader_last = VideoReader(last_frame_path)
|
86 |
-
total_frames_first = len(video_reader_first)
|
87 |
-
total_frames_last = len(video_reader_last)
|
88 |
-
start_frame_ind_f, end_frame_ind_f = temporal_sample_func(total_frames_first)
|
89 |
-
start_frame_ind_l, end_frame_ind_l = temporal_sample_func(total_frames_last)
|
90 |
-
frame_indice_f = np.linspace(start_frame_ind_f, end_frame_ind_f-1, args.num_frames, dtype=int)
|
91 |
-
frame_indice_l = np.linspace(start_frame_ind_l, end_frame_ind_l-1, args.num_frames, dtype=int)
|
92 |
-
video_frames_first = torch.from_numpy(video_reader_first.get_batch(frame_indice_f).asnumpy()).permute(0, 3, 1, 2).contiguous()
|
93 |
-
video_frames_last = torch.from_numpy(video_reader_last.get_batch(frame_indice_l).asnumpy()).permute(0, 3, 1, 2).contiguous()
|
94 |
-
video_frames_first = transform_video(video_frames_first) # f,c,h,w
|
95 |
-
video_frames_last = transform_video(video_frames_last)
|
96 |
-
num_zeros = args.num_frames-2*num
|
97 |
-
video_frames.append(video_frames_first[-num:])
|
98 |
-
for i in range(num_zeros):
|
99 |
-
zeros = torch.zeros_like(video_frames_first[0]).unsqueeze(0)
|
100 |
-
video_frames.append(zeros)
|
101 |
-
video_frames.append(video_frames_last[:num])
|
102 |
-
video_frames = torch.cat(video_frames, dim=0)
|
103 |
-
# video_frames = transform_video(video_frames)
|
104 |
-
n = num
|
105 |
-
else:
|
106 |
-
for file in file_list:
|
107 |
-
if file.endswith('jpg') or file.endswith('png'):
|
108 |
-
image = torch.as_tensor(np.array(Image.open(file), dtype=np.uint8, copy=True)).unsqueeze(0)
|
109 |
-
video_frames.append(image)
|
110 |
-
else:
|
111 |
-
continue
|
112 |
-
n = 0
|
113 |
-
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w
|
114 |
-
video_frames = transform_video(video_frames)
|
115 |
-
return video_frames, n
|
116 |
-
elif os.path.isfile(input_path):
|
117 |
-
_, full_file_name = os.path.split(input_path)
|
118 |
-
file_name, extention = os.path.splitext(full_file_name)
|
119 |
-
if extention == '.jpg' or extention == '.png':
|
120 |
-
# raise TypeError('a single image is not supported yet!!')
|
121 |
-
print("reading video from a image")
|
122 |
-
video_frames = []
|
123 |
-
num = int(args.mask_type.split('first')[-1])
|
124 |
-
first_frame = torch.as_tensor(np.array(Image.open(input_path).convert("RGB"), dtype=np.uint8, copy=True)).unsqueeze(0)
|
125 |
-
for i in range(num):
|
126 |
-
video_frames.append(first_frame)
|
127 |
-
num_zeros = args.num_frames - num
|
128 |
-
for i in range(num_zeros):
|
129 |
-
zeros = torch.zeros_like(first_frame)
|
130 |
-
video_frames.append(zeros)
|
131 |
-
n = 0
|
132 |
-
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w
|
133 |
-
H_scale = args.image_h / video_frames.shape[2]
|
134 |
-
W_scale = args.image_w / video_frames.shape[3]
|
135 |
-
scale_ = H_scale
|
136 |
-
if W_scale < H_scale:
|
137 |
-
scale_ = W_scale
|
138 |
-
video_frames = torch.nn.functional.interpolate(video_frames, scale_factor=scale_, mode="bilinear", align_corners=False)
|
139 |
-
video_frames = transform_video(video_frames)
|
140 |
-
return video_frames, n
|
141 |
-
elif extention == '.mp4':
|
142 |
-
video_reader = VideoReader(input_path)
|
143 |
-
total_frames = len(video_reader)
|
144 |
-
start_frame_ind, end_frame_ind = temporal_sample_func(total_frames)
|
145 |
-
frame_indice = np.linspace(start_frame_ind, end_frame_ind-1, args.num_frames, dtype=int)
|
146 |
-
video_frames = torch.from_numpy(video_reader.get_batch(frame_indice).asnumpy()).permute(0, 3, 1, 2).contiguous()
|
147 |
-
video_frames = transform_video(video_frames)
|
148 |
-
n = args.researve_frame
|
149 |
-
del video_reader
|
150 |
-
return video_frames, n
|
151 |
-
else:
|
152 |
-
raise TypeError(f'{extention} is not supported !!')
|
153 |
-
else:
|
154 |
-
raise ValueError('Please check your path input!!')
|
155 |
-
else:
|
156 |
-
# raise ValueError('Need to give a video or some images')
|
157 |
-
print('given video is None, using text to video')
|
158 |
-
video_frames = torch.zeros(16,3,args.latent_h,args.latent_w,dtype=torch.uint8)
|
159 |
-
args.mask_type = 'all'
|
160 |
-
video_frames = transform_video(video_frames)
|
161 |
-
n = 0
|
162 |
-
return video_frames, n
|
163 |
-
|
164 |
-
def auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,):
|
165 |
-
# masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous()
|
166 |
-
# masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215)
|
167 |
-
# masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous()
|
168 |
-
# mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_size, latent_size)).unsqueeze(1)
|
169 |
-
b,f,c,h,w=video_input.shape
|
170 |
-
latent_h = args.image_size[0] // 8
|
171 |
-
latent_w = args.image_size[1] // 8
|
172 |
-
|
173 |
-
# prepare inputs
|
174 |
-
# video_input = rearrange(video_input, 'b f c h w -> (b f) c h w').contiguous()
|
175 |
-
# video_input = vae.encode(video_input).latent_dist.sample().mul_(0.18215)
|
176 |
-
# video_input = rearrange(video_input, '(b f) c h w -> b c f h w', b=b).contiguous()
|
177 |
-
if args.use_fp16:
|
178 |
-
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, dtype=torch.float16, device=device) # b,c,f,h,w
|
179 |
-
masked_video = masked_video.to(dtype=torch.float16)
|
180 |
-
mask = mask.to(dtype=torch.float16)
|
181 |
-
else:
|
182 |
-
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device) # b,c,f,h,w
|
183 |
-
|
184 |
-
|
185 |
-
masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous()
|
186 |
-
masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215)
|
187 |
-
masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous()
|
188 |
-
mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_h, latent_w)).unsqueeze(1)
|
189 |
-
|
190 |
-
|
191 |
-
# classifier_free_guidance
|
192 |
-
if args.do_classifier_free_guidance:
|
193 |
-
masked_video = torch.cat([masked_video] * 2)
|
194 |
-
mask = torch.cat([mask] * 2)
|
195 |
-
z = torch.cat([z] * 2)
|
196 |
-
prompt_all = [prompt] + [args.negative_prompt]
|
197 |
-
else:
|
198 |
-
masked_video = masked_video
|
199 |
-
mask = mask
|
200 |
-
z = z
|
201 |
-
prompt_all = [prompt]
|
202 |
-
|
203 |
-
text_prompt = text_encoder(text_prompts=prompt_all, train=False)
|
204 |
-
model_kwargs = dict(encoder_hidden_states=text_prompt,
|
205 |
-
class_labels=None,
|
206 |
-
cfg_scale=args.cfg_scale,
|
207 |
-
use_fp16=args.use_fp16,) # tav unet
|
208 |
-
|
209 |
-
# Sample images:
|
210 |
-
if args.sample_method == 'ddim':
|
211 |
-
samples = diffusion.ddim_sample_loop(
|
212 |
-
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \
|
213 |
-
mask=mask, x_start=masked_video, use_concat=args.use_mask
|
214 |
-
)
|
215 |
-
elif args.sample_method == 'ddpm':
|
216 |
-
samples = diffusion.p_sample_loop(
|
217 |
-
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \
|
218 |
-
mask=mask, x_start=masked_video, use_concat=args.use_mask
|
219 |
-
)
|
220 |
-
samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32]
|
221 |
-
if args.use_fp16:
|
222 |
-
samples = samples.to(dtype=torch.float16)
|
223 |
-
|
224 |
-
video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32]
|
225 |
-
video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256]
|
226 |
-
return video_clip
|
227 |
-
|
228 |
-
def auto_inpainting_temp_split(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,):
|
229 |
-
b,f,c,h,w=video_input.shape
|
230 |
-
latent_h = args.image_size[0] // 8
|
231 |
-
latent_w = args.image_size[1] // 8
|
232 |
-
|
233 |
-
if args.use_fp16:
|
234 |
-
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, dtype=torch.float16, device=device) # b,c,f,h,w
|
235 |
-
masked_video = masked_video.to(dtype=torch.float16)
|
236 |
-
mask = mask.to(dtype=torch.float16)
|
237 |
-
else:
|
238 |
-
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device) # b,c,f,h,w
|
239 |
-
|
240 |
-
|
241 |
-
masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous()
|
242 |
-
masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215)
|
243 |
-
masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous()
|
244 |
-
mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_h, latent_w)).unsqueeze(1)
|
245 |
-
|
246 |
-
if args.do_classifier_free_guidance:
|
247 |
-
masked_video = torch.cat([masked_video] * 3)
|
248 |
-
mask = torch.cat([mask] * 3)
|
249 |
-
z = torch.cat([z] * 3)
|
250 |
-
prompt_all = [prompt] + [prompt] + [args.negative_prompt]
|
251 |
-
prompt_temp = [prompt] + [""] + [""]
|
252 |
-
else:
|
253 |
-
masked_video = masked_video
|
254 |
-
mask = mask
|
255 |
-
z = z
|
256 |
-
prompt_all = [prompt]
|
257 |
-
|
258 |
-
text_prompt = text_encoder(text_prompts=prompt_all, train=False)
|
259 |
-
temporal_text_prompt = text_encoder(text_prompts=prompt_temp, train=False)
|
260 |
-
model_kwargs = dict(encoder_hidden_states=text_prompt,
|
261 |
-
class_labels=None,
|
262 |
-
cfg_scale=args.cfg_scale,
|
263 |
-
use_fp16=args.use_fp16,
|
264 |
-
encoder_temporal_hidden_states=temporal_text_prompt) # tav unet
|
265 |
-
|
266 |
-
# Sample images:
|
267 |
-
if args.sample_method == 'ddim':
|
268 |
-
samples = diffusion.ddim_sample_loop(
|
269 |
-
model.forward_with_cfg_temp_split, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \
|
270 |
-
mask=mask, x_start=masked_video, use_concat=args.use_mask
|
271 |
-
)
|
272 |
-
elif args.sample_method == 'ddpm':
|
273 |
-
samples = diffusion.p_sample_loop(
|
274 |
-
model.forward_with_cfg_temp_split, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \
|
275 |
-
mask=mask, x_start=masked_video, use_concat=args.use_mask
|
276 |
-
)
|
277 |
-
samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32]
|
278 |
-
if args.use_fp16:
|
279 |
-
samples = samples.to(dtype=torch.float16)
|
280 |
-
|
281 |
-
video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32]
|
282 |
-
video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256]
|
283 |
-
return video_clip
|
284 |
-
|
285 |
-
def main(args):
|
286 |
-
# torch.cuda.empty_cache()
|
287 |
-
print("--------------------------begin running--------------------------", flush=True)
|
288 |
-
if args.gpu is not None:
|
289 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
|
290 |
-
# Setup PyTorch:
|
291 |
-
if args.seed:
|
292 |
-
torch.manual_seed(args.seed)
|
293 |
-
torch.set_grad_enabled(False)
|
294 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
295 |
-
# device = "cpu"
|
296 |
-
|
297 |
-
if args.ckpt is None:
|
298 |
-
assert args.model == "DiT-XL/2", "Only DiT-XL/2 models are available for auto-download."
|
299 |
-
assert args.image_size in [256, 512]
|
300 |
-
assert args.num_classes == 1000
|
301 |
-
|
302 |
-
# Load model:
|
303 |
-
latent_h = args.image_size[0] // 8
|
304 |
-
latent_w = args.image_size[1] // 8
|
305 |
-
args.image_h = args.image_size[0]
|
306 |
-
args.image_w = args.image_size[1]
|
307 |
-
args.latent_h = latent_h
|
308 |
-
args.latent_w = latent_w
|
309 |
-
print('loading model')
|
310 |
-
model = get_models(args.use_mask, args).to(device)
|
311 |
-
model = tca_transform_model(model).to(device)
|
312 |
-
# model = temp_scale_set(model, 0.98)
|
313 |
-
|
314 |
-
if args.use_compile:
|
315 |
-
model = torch.compile(model)
|
316 |
-
if args.enable_xformers_memory_efficient_attention:
|
317 |
-
if is_xformers_available():
|
318 |
-
model.enable_xformers_memory_efficient_attention()
|
319 |
-
else:
|
320 |
-
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
321 |
-
|
322 |
-
# Auto-download a pre-trained model or load a custom DiT checkpoint from train.py:
|
323 |
-
ckpt_path = args.ckpt or f"DiT-XL-2-{args.image_size}x{args.image_size}.pt"
|
324 |
-
state_dict = find_model(ckpt_path)
|
325 |
-
model.load_state_dict(state_dict)
|
326 |
-
print('loading succeed')
|
327 |
-
|
328 |
-
model.eval() # important!
|
329 |
-
pretrained_model_path = args.pretrained_model_path
|
330 |
-
diffusion = create_diffusion(str(args.num_sampling_steps))
|
331 |
-
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").to(device)
|
332 |
-
text_encoder = TextEmbedder(tokenizer_path=pretrained_model_path + "tokenizer",
|
333 |
-
encoder_path=pretrained_model_path + "text_encoder").to(device)
|
334 |
-
if args.use_fp16:
|
335 |
-
print('Warnning: using half percision for inferencing!')
|
336 |
-
vae.to(dtype=torch.float16)
|
337 |
-
model.to(dtype=torch.float16)
|
338 |
-
text_encoder.to(dtype=torch.float16)
|
339 |
-
|
340 |
-
# Labels to condition the model with (feel free to change):
|
341 |
-
prompts = args.text_prompt
|
342 |
-
class_name = [p + args.additional_prompt for p in prompts]
|
343 |
-
|
344 |
-
if args.use_autoregressive:
|
345 |
-
if not os.path.exists(os.path.join(args.save_img_path)):
|
346 |
-
os.makedirs(os.path.join(args.save_img_path))
|
347 |
-
video_input, researve_frames = get_input(args) # f,c,h,w
|
348 |
-
video_input = video_input.to(device).unsqueeze(0) # b,f,c,h,w
|
349 |
-
mask = mask_generation_before(args.mask_type, video_input.shape, video_input.dtype, device) # b,f,c,h,w
|
350 |
-
# TODO: change the first3 to last3
|
351 |
-
if args.mask_type.startswith('first') and researve_frames != 0:
|
352 |
-
masked_video = torch.cat([video_input[:,-researve_frames:], video_input[:,:-researve_frames]], dim=1) * (mask == 0)
|
353 |
-
else:
|
354 |
-
masked_video = video_input * (mask == 0)
|
355 |
-
|
356 |
-
all_video = []
|
357 |
-
if researve_frames != 0:
|
358 |
-
all_video.append(video_input)
|
359 |
-
for idx, prompt in enumerate(class_name):
|
360 |
-
if idx == 0:
|
361 |
-
video_clip = auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,)
|
362 |
-
video_clip_ = video_clip.unsqueeze(0)
|
363 |
-
all_video.append(video_clip_[:, researve_frames:])
|
364 |
-
else:
|
365 |
-
researve_frames = args.researve_frame
|
366 |
-
if args.mask_type.startswith('first') and researve_frames != 0:
|
367 |
-
masked_video = torch.cat([video_clip_[:,-researve_frames:], video_clip_[:,:-researve_frames]], dim=1) * (mask == 0)
|
368 |
-
else:
|
369 |
-
masked_video = video_input * (mask == 0)
|
370 |
-
video_clip = auto_inpainting(args, video_clip.unsqueeze(0), masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,)
|
371 |
-
video_clip_ = video_clip.unsqueeze(0)
|
372 |
-
all_video.append(video_clip_[:, researve_frames:])
|
373 |
-
video_ = ((video_clip * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
|
374 |
-
if args.mask_type.startswith('video_onelast'):
|
375 |
-
torchvision.io.write_video(os.path.join(args.save_img_path, 'clip_video_' + '%04d' % idx + '.mp4'), video_[researve_frames:-researve_frames], fps=8)
|
376 |
-
else:
|
377 |
-
torchvision.io.write_video(os.path.join(args.save_img_path, 'clip_video_' + '%04d' % idx + '.mp4'), video_, fps=8)
|
378 |
-
if args.mask_type.startswith('first') and researve_frames != 0:
|
379 |
-
all_video = torch.cat(all_video, dim=1).squeeze(0)
|
380 |
-
video_ = ((all_video * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
|
381 |
-
torchvision.io.write_video(os.path.join(args.save_img_path, 'complete_video' + '.mp4'), video_, fps=8)
|
382 |
-
else:
|
383 |
-
# all_video = torch.cat(all_video, dim=-1).squeeze(0)
|
384 |
-
pass
|
385 |
-
print(f'save in {args.save_img_path}')
|
386 |
-
return os.path.join(args.save_img_path, 'clip_video_' + '%04d' % idx + '.mp4')
|
387 |
-
|
388 |
-
|
389 |
-
def call_main(input):
|
390 |
-
parser = argparse.ArgumentParser()
|
391 |
-
parser.add_argument("--config", type=str, default="./configs/sample_mask.yaml")
|
392 |
-
args = parser.parse_args()
|
393 |
-
omega_conf = OmegaConf.load(args.config)
|
394 |
-
omega_conf.text_prompt = [input]
|
395 |
-
return main(omega_conf)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|