Spaces:
Runtime error
Runtime error
File size: 18,733 Bytes
e574f5a 0ce7fea e574f5a 471b97b e574f5a ea80682 e574f5a affaf7b e574f5a 5d09556 e574f5a 5d09556 e574f5a a88163e e574f5a 471b97b e574f5a e054928 65e9383 e574f5a 0723018 e574f5a ae7106c e574f5a 355bbe3 e574f5a 0723018 e574f5a ee503e4 e574f5a 5d09556 e574f5a a88163e 5d09556 a88163e 653a139 a88163e ca7cb64 a88163e 9985965 a88163e e574f5a ea80682 e574f5a 5d09556 e574f5a a88163e 5d09556 a88163e 653a139 a88163e ca7cb64 a88163e 9985965 a88163e e574f5a 24a5924 e574f5a 5d09556 e574f5a 8fc1c58 e574f5a 8fc1c58 e574f5a 8fc1c58 e574f5a 7779b18 e574f5a 8fc1c58 e574f5a bdf0bc5 7779b18 e574f5a 7875496 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
import torch
import sys
try:
import utils
from diffusion import create_diffusion
except:
sys.path.append(os.path.split(sys.path[0])[0])
import utils
import gradio as gr
from gradio.themes.utils import colors, fonts, sizes
import argparse
from omegaconf import OmegaConf
import os
from models import get_models
from diffusers.utils.import_utils import is_xformers_available
from vlogger.STEB.model_transform import tca_transform_model, ip_scale_set, ip_transform_model
from diffusers.models import AutoencoderKL
from models.clip import TextEmbedder
sys.path.append("..")
from datasets import video_transforms
from torchvision import transforms
from utils import mask_generation_before
from einops import rearrange
import torchvision
from PIL import Image
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from transformers.image_transforms import convert_to_rgb
import spaces
@spaces.GPU
def auto_inpainting(video_input, masked_video, mask, prompt, image, vae, text_encoder, image_encoder, diffusion, model, device, cfg_scale, img_cfg_scale, negative_prompt=""):
global use_fp16
image_prompt_embeds = None
if prompt is None:
prompt = ""
if image is not None:
clip_image = clip_image_processor(images=image, return_tensors="pt").pixel_values
clip_image_embeds = image_encoder(clip_image.to(device)).image_embeds
uncond_clip_image_embeds = torch.zeros_like(clip_image_embeds).to(device)
image_prompt_embeds = torch.cat([clip_image_embeds, uncond_clip_image_embeds], dim=0)
image_prompt_embeds = rearrange(image_prompt_embeds, '(b n) c -> b n c', b=2).contiguous()
model = ip_scale_set(model, img_cfg_scale)
if use_fp16:
image_prompt_embeds = image_prompt_embeds.to(dtype=torch.float16)
b, f, c, h, w = video_input.shape
latent_h = video_input.shape[-2] // 8
latent_w = video_input.shape[-1] // 8
if use_fp16:
z = torch.randn(1, 4, 16, latent_h, latent_w, dtype=torch.float16, device=device) # b,c,f,h,w
masked_video = masked_video.to(dtype=torch.float16)
mask = mask.to(dtype=torch.float16)
else:
z = torch.randn(1, 4, 16, latent_h, latent_w, device=device) # b,c,f,h,w
masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous()
masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215)
masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous()
mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_h, latent_w)).unsqueeze(1)
masked_video = torch.cat([masked_video] * 2)
mask = torch.cat([mask] * 2)
z = torch.cat([z] * 2)
prompt_all = [prompt] + [negative_prompt]
text_prompt = text_encoder(text_prompts=prompt_all, train=False)
model_kwargs = dict(encoder_hidden_states=text_prompt,
class_labels=None,
cfg_scale=cfg_scale,
use_fp16=use_fp16,
ip_hidden_states=image_prompt_embeds)
# Sample images:
samples = diffusion.ddim_sample_loop(
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \
mask=mask, x_start=masked_video, use_concat=True
)
samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32]
if use_fp16:
samples = samples.to(dtype=torch.float16)
video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32]
video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256]
return video_clip
@spaces.GPU
def auto_inpainting_temp_split(video_input, masked_video, mask, prompt, image, vae, text_encoder, image_encoder, diffusion, model, device, scfg_scale, tcfg_scale, img_cfg_scale, negative_prompt=""):
global use_fp16
image_prompt_embeds = None
if prompt is None:
prompt = ""
if image is not None:
clip_image = clip_image_processor(images=image, return_tensors="pt").pixel_values
clip_image_embeds = image_encoder(clip_image.to(device)).image_embeds
uncond_clip_image_embeds = torch.zeros_like(clip_image_embeds).to(device)
image_prompt_embeds = torch.cat([clip_image_embeds, clip_image_embeds, uncond_clip_image_embeds], dim=0)
image_prompt_embeds = rearrange(image_prompt_embeds, '(b n) c -> b n c', b=3).contiguous()
model = ip_scale_set(model, img_cfg_scale)
if use_fp16:
image_prompt_embeds = image_prompt_embeds.to(dtype=torch.float16)
b, f, c, h, w = video_input.shape
latent_h = video_input.shape[-2] // 8
latent_w = video_input.shape[-1] // 8
if use_fp16:
z = torch.randn(1, 4, 16, latent_h, latent_w, dtype=torch.float16, device=device) # b,c,f,h,w
masked_video = masked_video.to(dtype=torch.float16)
mask = mask.to(dtype=torch.float16)
else:
z = torch.randn(1, 4, 16, latent_h, latent_w, device=device) # b,c,f,h,w
masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous()
masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215)
masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous()
mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_h, latent_w)).unsqueeze(1)
masked_video = torch.cat([masked_video] * 3)
mask = torch.cat([mask] * 3)
z = torch.cat([z] * 3)
prompt_all = [prompt] + [prompt] + [negative_prompt]
prompt_temp = [prompt] + [""] + [""]
text_prompt = text_encoder(text_prompts=prompt_all, train=False)
temporal_text_prompt = text_encoder(text_prompts=prompt_temp, train=False)
model_kwargs = dict(encoder_hidden_states=text_prompt,
class_labels=None,
scfg_scale=scfg_scale,
tcfg_scale=tcfg_scale,
use_fp16=use_fp16,
ip_hidden_states=image_prompt_embeds,
encoder_temporal_hidden_states=temporal_text_prompt)
# Sample images:
samples = diffusion.ddim_sample_loop(
model.forward_with_cfg_temp_split, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \
mask=mask, x_start=masked_video, use_concat=True
)
samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32]
if use_fp16:
samples = samples.to(dtype=torch.float16)
video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32]
video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256]
return video_clip
# ========================================
# Model Initialization
# ========================================
device = None
output_path = None
use_fp16 = False
model = None
vae = None
text_encoder = None
image_encoder = None
clip_image_processor = None
# @spaces.GPU
def init_model():
global device
global output_path
global use_fp16
global model
global diffusion
global vae
global text_encoder
global image_encoder
global clip_image_processor
print('Initializing ShowMaker', flush=True)
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/with_mask_ref_sample.yaml")
args = parser.parse_args()
args = OmegaConf.load(args.config)
# device = "cuda" if torch.cuda.is_available() else "cpu"
device = "cpu"
output_path = args.save_path
# Load model:
latent_h = args.image_size[0] // 8
latent_w = args.image_size[1] // 8
args.image_h = args.image_size[0]
args.image_w = args.image_size[1]
args.latent_h = latent_h
args.latent_w = latent_w
print('loading model')
model = get_models(args).to(device)
model = tca_transform_model(model).to(device)
model = ip_transform_model(model).to(device)
if args.enable_xformers_memory_efficient_attention and device=="cuda":
if is_xformers_available():
model.enable_xformers_memory_efficient_attention()
print("xformer!")
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
ckpt_path = args.ckpt
state_dict = state_dict = torch.load(ckpt_path, map_location=lambda storage, loc: storage)['ema']
model.load_state_dict(state_dict)
print('loading succeed')
model.eval() # important!
pretrained_model_path = args.pretrained_model_path
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").to(device)
text_encoder = TextEmbedder(pretrained_model_path).to(device)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.image_encoder_path).to(device)
clip_image_processor = CLIPImageProcessor()
if args.use_fp16:
print('Warnning: using half percision for inferencing!')
vae.to(dtype=torch.float16)
model.to(dtype=torch.float16)
text_encoder.to(dtype=torch.float16)
# image_encoder.to(dtype=torch.float16)
use_fp16 = True
print('Initialization Finished')
init_model()
# ========================================
# Video Generation
# ========================================
@spaces.GPU
def video_generation(text, image, scfg_scale, tcfg_scale, img_cfg_scale, diffusion):
device = "cuda" if torch.cuda.is_available() else "cpu"
global output_path
global use_fp16
global model
global vae
global text_encoder
global image_encoder
global clip_image_processor
vae = vae.to(device)
text_encoder = text_encoder.to(device)
image_encoder = image_encoder.to(device)
model = model.to(device)
if device=="cuda":
if is_xformers_available():
model.enable_xformers_memory_efficient_attention()
print("xformer!")
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
if use_fp16:
print('Warnning: using half percision for inferencing!')
vae.to(dtype=torch.float16)
model.to(dtype=torch.float16)
text_encoder.to(dtype=torch.float16)
# image_encoder.to(dtype=torch.float16)
use_fp16 = True
print('Initialization Finished')
with torch.no_grad():
print("begin generation", flush=True)
transform_video = transforms.Compose([
video_transforms.ToTensorVideo(), # TCHW
video_transforms.ResizeVideo((320, 512)),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
])
video_frames = torch.zeros(16, 3, 320, 512, dtype=torch.uint8)
video_frames = transform_video(video_frames)
video_input = video_frames.to(device).unsqueeze(0) # b,f,c,h,w
mask = mask_generation_before("all", video_input.shape, video_input.dtype, device)
masked_video = video_input * (mask == 0)
if image is not None:
print(image.shape, flush=True)
# image = Image.open(image)
if scfg_scale == tcfg_scale:
video_clip = auto_inpainting(video_input, masked_video, mask, text, image, vae, text_encoder, image_encoder, diffusion, model, device, scfg_scale, img_cfg_scale)
else:
video_clip = auto_inpainting_temp_split(video_input, masked_video, mask, text, image, vae, text_encoder, image_encoder, diffusion, model, device, scfg_scale, tcfg_scale, img_cfg_scale)
video_clip = ((video_clip * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
video_path = os.path.join(output_path, 'video.mp4')
torchvision.io.write_video(video_path, video_clip, fps=8)
return video_path
# ========================================
# Video Prediction
# ========================================
@spaces.GPU
def video_prediction(text, image, scfg_scale, tcfg_scale, img_cfg_scale, preframe, diffusion):
device = "cuda" if torch.cuda.is_available() else "cpu"
global output_path
global use_fp16
global model
global vae
global text_encoder
global image_encoder
global clip_image_processor
vae = vae.to(device)
text_encoder = text_encoder.to(device)
image_encoder = image_encoder.to(device)
model = model.to(device)
if device=="cuda":
if is_xformers_available():
model.enable_xformers_memory_efficient_attention()
print("xformer!")
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
if use_fp16:
print('Warnning: using half percision for inferencing!')
vae.to(dtype=torch.float16)
model.to(dtype=torch.float16)
text_encoder.to(dtype=torch.float16)
# image_encoder.to(dtype=torch.float16)
use_fp16 = True
print('Initialization Finished')
with torch.no_grad():
print("begin generation", flush=True)
transform_video = transforms.Compose([
video_transforms.ToTensorVideo(), # TCHW
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
])
preframe = torch.as_tensor(convert_to_rgb(preframe)).unsqueeze(0)
zeros = torch.zeros_like(preframe)
video_frames = torch.cat([preframe] + [zeros] * 15, dim=0).permute(0, 3, 1, 2)
H_scale = 320 / video_frames.shape[2]
W_scale = 512 / video_frames.shape[3]
scale_ = H_scale
if W_scale < H_scale:
scale_ = W_scale
video_frames = torch.nn.functional.interpolate(video_frames, scale_factor=scale_, mode="bilinear", align_corners=False)
video_frames = transform_video(video_frames)
video_input = video_frames.to(device).unsqueeze(0) # b,f,c,h,w
mask = mask_generation_before("first1", video_input.shape, video_input.dtype, device)
masked_video = video_input * (mask == 0)
if image is not None:
print(image.shape, flush=True)
if scfg_scale == tcfg_scale:
video_clip = auto_inpainting(video_input, masked_video, mask, text, image, vae, text_encoder, image_encoder, diffusion, model, device, scfg_scale, img_cfg_scale)
else:
video_clip = auto_inpainting_temp_split(video_input, masked_video, mask, text, image, vae, text_encoder, image_encoder, diffusion, model, device, scfg_scale, tcfg_scale, img_cfg_scale)
video_clip = ((video_clip * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
video_path = os.path.join(output_path, 'video.mp4')
torchvision.io.write_video(video_path, video_clip, fps=8)
return video_path
# ========================================
# Judge Generation or Prediction
# ========================================
@spaces.GPU
def gen_or_pre(text_input, image_input, scfg_scale, tcfg_scale, img_cfg_scale, preframe_input, diffusion_step):
default_step = [25, 40, 50, 100, 125, 200, 250]
difference = [abs(item - diffusion_step) for item in default_step]
diffusion_step = default_step[difference.index(min(difference))]
diffusion = create_diffusion(str(diffusion_step))
if preframe_input is None:
return video_generation(text_input, image_input, scfg_scale, tcfg_scale, img_cfg_scale, diffusion)
else:
return video_prediction(text_input, image_input, scfg_scale, tcfg_scale, img_cfg_scale, preframe_input, diffusion)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(visible=True) as input_raws:
with gr.Row():
with gr.Column(scale=1.0):
text_input = gr.Textbox(show_label=True, interactive=True, label="Text prompt")
with gr.Row():
with gr.Column(scale=0.5):
image_input = gr.Image(show_label=True, interactive=True, label="Reference image")
with gr.Column(scale=0.5):
preframe_input = gr.Image(show_label=True, interactive=True, label="First frame")
with gr.Row():
with gr.Column(scale=1.0):
scfg_scale = gr.Slider(
minimum=1,
maximum=50,
value=8,
step=0.1,
interactive=True,
label="Spatial Text Guidence Scale",
)
# with gr.Row():
# with gr.Column(scale=1.0):
# tcfg_scale = gr.Slider(
# minimum=1,
# maximum=50,
# value=6.5,
# step=0.1,
# interactive=True,
# label="Temporal Text Guidence Scale",
# )
with gr.Row():
with gr.Column(scale=1.0):
img_cfg_scale = gr.Slider(
minimum=0,
maximum=1,
value=0.3,
step=0.005,
interactive=True,
label="Image Guidence Scale",
)
with gr.Row():
with gr.Column(scale=1.0):
diffusion_step = gr.Slider(
minimum=20,
maximum=250,
value=100,
step=1,
interactive=True,
label="Diffusion Step",
)
with gr.Row():
with gr.Column(scale=0.5, min_width=0):
run = gr.Button("πSend")
with gr.Column(scale=0.5, min_width=0):
clear = gr.Button("πClearοΈ")
with gr.Column(scale=0.5, visible=True) as video_upload:
output_video = gr.Video(interactive=False, include_audio=True, elem_id="θΎεΊηθ§ι’")
clear = gr.Button("Restart")
ex = gr.Examples(
examples = [["Underwater environment cosmetic bottles", None, 7.5, 7.5, None, "./input/i2v/Underwater_environment_cosmetic_bottles.png", 100],
fn = infer,
inputs = [text_input, image_input, scfg_scale, tcfg_scale, img_cfg_scale, preframe_input, diffusion_step],
outputs=[output_video],
cache_examples=False
)
tcfg_scale = scfg_scale
run.click(gen_or_pre, [text_input, image_input, scfg_scale, tcfg_scale, img_cfg_scale, preframe_input, diffusion_step], [output_video])
demo.queue(max_size=12).launch()
|