Spaces:
Running
Running
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions'] | |
import os | |
import io | |
import gradio as gr | |
import pandas as pd | |
import json | |
import shutil | |
import tempfile | |
import datetime | |
import zipfile | |
from constants import * | |
from huggingface_hub import Repository | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
global data_component, filter_component | |
def upload_file(files): | |
file_paths = [file.name for file in files] | |
return file_paths | |
def add_new_eval( | |
input_file, | |
model_name_textbox: str, | |
revision_name_textbox: str, | |
model_link: str, | |
): | |
if input_file is None: | |
return "Error! Empty file!" | |
# upload_data=json.loads(input_file) | |
upload_content = input_file | |
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") | |
submission_repo.git_pull() | |
filename = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") | |
now = datetime.datetime.now() | |
with open(f'{SUBMISSION_NAME}/{filename}.zip','wb') as f: | |
f.write(input_file) | |
# shutil.copyfile(CSV_DIR, os.path.join(SUBMISSION_NAME, f"{input_file}")) | |
csv_data = pd.read_csv(CSV_DIR) | |
if revision_name_textbox == '': | |
col = csv_data.shape[0] | |
model_name = model_name_textbox | |
else: | |
model_name = revision_name_textbox | |
model_name_list = csv_data['Model Name (clickable)'] | |
name_list = [name.split(']')[0][1:] for name in model_name_list] | |
if revision_name_textbox not in name_list: | |
col = csv_data.shape[0] | |
else: | |
col = name_list.index(revision_name_textbox) | |
if model_link == '': | |
model_name = model_name # no url | |
else: | |
model_name = '[' + model_name + '](' + model_link + ')' | |
os.makedirs(filename, exist_ok=True) | |
with zipfile.ZipFile(io.BytesIO(input_file), 'r') as zip_ref: | |
zip_ref.extractall(filename) | |
upload_data = {} | |
for file in os.listdir(filename): | |
if file.startswith('.') or file.startswith('__'): | |
print(f"Skip the file: {file}") | |
continue | |
cur_file = os.path.join(filename, file) | |
if os.path.isdir(cur_file): | |
for subfile in os.listdir(cur_file): | |
if file.endswith("json"): | |
with open(os.path.join(cur_file, subfile)) as ff: | |
cur_json = json.load(ff) | |
print(file, type(cur_json)) | |
if isinstance(cur_json, dict): | |
print(cur_json.keys()) | |
for key in cur_json: | |
upload_data[key.replace('_',' ')] = cur_json[key][0] | |
print(f"{key}:{cur_json[key][0]}") | |
elif cur_file.endswith('json'): | |
with open(cur_file) as ff: | |
cur_json = json.load(ff) | |
print(file, type(cur_json)) | |
if isinstance(cur_json, dict): | |
print(cur_json.keys()) | |
for key in cur_json: | |
upload_data[key.replace('_',' ')] = cur_json[key][0] | |
print(f"{key}:{cur_json[key][0]}") | |
# add new data | |
new_data = [ | |
model_name | |
] | |
for key in TASK_INFO: | |
if key in upload_data: | |
new_data.append(upload_data[key]) | |
else: | |
new_data.append(0) | |
new_data.append("User Upload.") | |
csv_data.loc[col] = new_data | |
csv_data = csv_data.to_csv(CSV_DIR, index=False) | |
submission_repo.push_to_hub() | |
print("success update", model_name) | |
return 0 | |
def get_normalized_df(df): | |
# final_score = df.drop('name', axis=1).sum(axis=1) | |
# df.insert(1, 'Overall Score', final_score) | |
normalize_df = df.copy().fillna(0.0) | |
for column in normalize_df.columns[1:-1]: | |
min_val = NORMALIZE_DIC[column]['Min'] | |
max_val = NORMALIZE_DIC[column]['Max'] | |
normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val) | |
return normalize_df | |
def get_normalized_i2v_df(df): | |
normalize_df = df.copy().fillna(0.0) | |
for column in normalize_df.columns[1:]: | |
min_val = NORMALIZE_DIC_I2V[column]['Min'] | |
max_val = NORMALIZE_DIC_I2V[column]['Max'] | |
normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val) | |
return normalize_df | |
def calculate_selected_score(df, selected_columns): | |
# selected_score = df[selected_columns].sum(axis=1) | |
selected_QUALITY = [i for i in selected_columns if i in QUALITY_LIST] | |
selected_SEMANTIC = [i for i in selected_columns if i in SEMANTIC_LIST] | |
selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_QUALITY]) | |
selected_semantic_score = df[selected_SEMANTIC].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_SEMANTIC ]) | |
if selected_quality_score.isna().any().any() and selected_semantic_score.isna().any().any(): | |
selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT) | |
return selected_score.fillna(0.0) | |
if selected_quality_score.isna().any().any(): | |
return selected_semantic_score | |
if selected_semantic_score.isna().any().any(): | |
return selected_quality_score | |
# print(selected_semantic_score,selected_quality_score ) | |
selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT) | |
return selected_score.fillna(0.0) | |
def calculate_selected_score_i2v(df, selected_columns): | |
# selected_score = df[selected_columns].sum(axis=1) | |
selected_QUALITY = [i for i in selected_columns if i in I2V_QUALITY_LIST] | |
selected_I2V = [i for i in selected_columns if i in I2V_LIST] | |
selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in selected_QUALITY]) | |
selected_i2v_score = df[selected_I2V].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in selected_I2V ]) | |
if selected_quality_score.isna().any().any() and selected_i2v_score.isna().any().any(): | |
selected_score = (selected_quality_score * I2V_QUALITY_WEIGHT + selected_i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT) | |
return selected_score.fillna(0.0) | |
if selected_quality_score.isna().any().any(): | |
return selected_i2v_score | |
if selected_i2v_score.isna().any().any(): | |
return selected_quality_score | |
# print(selected_i2v_score,selected_quality_score ) | |
selected_score = (selected_quality_score * I2V_QUALITY_WEIGHT + selected_i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT) | |
return selected_score.fillna(0.0) | |
def get_final_score(df, selected_columns): | |
normalize_df = get_normalized_df(df) | |
#final_score = normalize_df.drop('name', axis=1).sum(axis=1) | |
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop('Source', axis=1): | |
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name] | |
quality_score = normalize_df[QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in QUALITY_LIST]) | |
semantic_score = normalize_df[SEMANTIC_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in SEMANTIC_LIST ]) | |
final_score = (quality_score * QUALITY_WEIGHT + semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT) | |
if 'Total Score' in df: | |
df['Total Score'] = final_score | |
else: | |
df.insert(1, 'Total Score', final_score) | |
if 'Semantic Score' in df: | |
df['Semantic Score'] = semantic_score | |
else: | |
df.insert(2, 'Semantic Score', semantic_score) | |
if 'Quality Score' in df: | |
df['Quality Score'] = quality_score | |
else: | |
df.insert(3, 'Quality Score', quality_score) | |
selected_score = calculate_selected_score(normalize_df, selected_columns) | |
if 'Selected Score' in df: | |
df['Selected Score'] = selected_score | |
else: | |
df.insert(1, 'Selected Score', selected_score) | |
return df | |
def get_final_score_i2v(df, selected_columns): | |
normalize_df = get_normalized_i2v_df(df) | |
#final_score = normalize_df.drop('name', axis=1).sum(axis=1) | |
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop('Video-Text Camera Motion', axis=1): | |
normalize_df[name] = normalize_df[name]*DIM_WEIGHT_I2V[name] | |
quality_score = normalize_df[I2V_QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in I2V_QUALITY_LIST]) | |
i2v_score = normalize_df[I2V_LIST].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in I2V_LIST ]) | |
final_score = (quality_score * I2V_QUALITY_WEIGHT + i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT) | |
if 'Total Score' in df: | |
df['Total Score'] = final_score | |
else: | |
df.insert(1, 'Total Score', final_score) | |
if 'I2V Score' in df: | |
df['I2V Score'] = i2v_score | |
else: | |
df.insert(2, 'I2V Score', i2v_score) | |
if 'Quality Score' in df: | |
df['Quality Score'] = quality_score | |
else: | |
df.insert(3, 'Quality Score', quality_score) | |
selected_score = calculate_selected_score_i2v(normalize_df, selected_columns) | |
if 'Selected Score' in df: | |
df['Selected Score'] = selected_score | |
else: | |
df.insert(1, 'Selected Score', selected_score) | |
return df | |
def get_final_score_quality(df, selected_columns): | |
normalize_df = get_normalized_df(df) | |
for name in normalize_df.drop('Model Name (clickable)', axis=1): | |
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name] | |
quality_score = normalize_df[QUALITY_TAB].sum(axis=1) / sum([DIM_WEIGHT[i] for i in QUALITY_TAB]) | |
if 'Quality Score' in df: | |
df['Quality Score'] = quality_score | |
else: | |
df.insert(1, 'Quality Score', quality_score) | |
# selected_score = normalize_df[selected_columns].sum(axis=1) / len(selected_columns) | |
selected_score = normalize_df[selected_columns].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_columns]) | |
if 'Selected Score' in df: | |
df['Selected Score'] = selected_score | |
else: | |
df.insert(1, 'Selected Score', selected_score) | |
return df | |
def get_baseline_df(): | |
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") | |
submission_repo.git_pull() | |
df = pd.read_csv(CSV_DIR) | |
df = get_final_score(df, checkbox_group.value) | |
df = df.sort_values(by="Selected Score", ascending=False) | |
present_columns = MODEL_INFO + checkbox_group.value | |
df = df[present_columns] | |
df = convert_scores_to_percentage(df) | |
return df | |
def get_baseline_df_quality(): | |
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") | |
submission_repo.git_pull() | |
df = pd.read_csv(QUALITY_DIR) | |
df = get_final_score_quality(df, checkbox_group_quality.value) | |
df = df.sort_values(by="Selected Score", ascending=False) | |
present_columns = MODEL_INFO_TAB_QUALITY + checkbox_group_quality.value | |
df = df[present_columns] | |
df = convert_scores_to_percentage(df) | |
return df | |
def get_baseline_df_i2v(): | |
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") | |
submission_repo.git_pull() | |
df = pd.read_csv(I2V_DIR) | |
df = get_final_score_i2v(df, checkbox_group_i2v.value) | |
df = df.sort_values(by="Selected Score", ascending=False) | |
present_columns = MODEL_INFO_TAB_I2V + checkbox_group_i2v.value | |
df = df[present_columns] | |
df = convert_scores_to_percentage(df) | |
return df | |
def get_all_df(selected_columns, dir=CSV_DIR): | |
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") | |
submission_repo.git_pull() | |
df = pd.read_csv(dir) | |
df = get_final_score(df, selected_columns) | |
df = df.sort_values(by="Selected Score", ascending=False) | |
return df | |
def get_all_df_quality(selected_columns, dir=QUALITY_DIR): | |
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") | |
submission_repo.git_pull() | |
df = pd.read_csv(dir) | |
df = get_final_score_quality(df, selected_columns) | |
df = df.sort_values(by="Selected Score", ascending=False) | |
return df | |
def get_all_df_i2v(selected_columns, dir=I2V_DIR): | |
# submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") | |
# submission_repo.git_pull() | |
df = pd.read_csv(dir) | |
df = get_final_score_i2v(df, selected_columns) | |
df = df.sort_values(by="Selected Score", ascending=False) | |
return df | |
def convert_scores_to_percentage(df): | |
# 对DataFrame中的每一列(除了'name'列)进行操作 | |
if 'Source' in df.columns: | |
skip_col =2 | |
else: | |
skip_col =1 | |
for column in df.columns[skip_col:]: # 假设第一列是'name' | |
df[column] = round(df[column] * 100,2) # 将分数转换为百分数 | |
df[column] = df[column].astype(str) + '%' | |
return df | |
def choose_all_quailty(): | |
return gr.update(value=QUALITY_LIST) | |
def choose_all_semantic(): | |
return gr.update(value=SEMANTIC_LIST) | |
def disable_all(): | |
return gr.update(value=[]) | |
def enable_all(): | |
return gr.update(value=TASK_INFO) | |
def on_filter_model_size_method_change(selected_columns): | |
updated_data = get_all_df(selected_columns, CSV_DIR) | |
#print(updated_data) | |
# columns: | |
selected_columns = [item for item in TASK_INFO if item in selected_columns] | |
present_columns = MODEL_INFO + selected_columns | |
updated_data = updated_data[present_columns] | |
updated_data = updated_data.sort_values(by="Selected Score", ascending=False) | |
updated_data = convert_scores_to_percentage(updated_data) | |
updated_headers = present_columns | |
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers] | |
# print(updated_data,present_columns,update_datatype) | |
filter_component = gr.components.Dataframe( | |
value=updated_data, | |
headers=updated_headers, | |
type="pandas", | |
datatype=update_datatype, | |
interactive=False, | |
visible=True, | |
) | |
return filter_component#.value | |
def on_filter_model_size_method_change_quality(selected_columns): | |
updated_data = get_all_df_quality(selected_columns, QUALITY_DIR) | |
#print(updated_data) | |
# columns: | |
selected_columns = [item for item in QUALITY_TAB if item in selected_columns] | |
present_columns = MODEL_INFO_TAB_QUALITY + selected_columns | |
updated_data = updated_data[present_columns] | |
updated_data = updated_data.sort_values(by="Selected Score", ascending=False) | |
updated_data = convert_scores_to_percentage(updated_data) | |
updated_headers = present_columns | |
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers] | |
# print(updated_data,present_columns,update_datatype) | |
filter_component = gr.components.Dataframe( | |
value=updated_data, | |
headers=updated_headers, | |
type="pandas", | |
datatype=update_datatype, | |
interactive=False, | |
visible=True, | |
) | |
return filter_component#.value | |
def on_filter_model_size_method_change_i2v(selected_columns): | |
updated_data = get_all_df_i2v(selected_columns, I2V_DIR) | |
selected_columns = [item for item in I2V_TAB if item in selected_columns] | |
present_columns = MODEL_INFO_TAB_I2V + selected_columns | |
updated_data = updated_data[present_columns] | |
updated_data = updated_data.sort_values(by="Selected Score", ascending=False) | |
updated_data = convert_scores_to_percentage(updated_data) | |
updated_headers = present_columns | |
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES_I2V.index(x)] for x in updated_headers] | |
# print(updated_data,present_columns,update_datatype) | |
filter_component = gr.components.Dataframe( | |
value=updated_data, | |
headers=updated_headers, | |
type="pandas", | |
datatype=update_datatype, | |
interactive=False, | |
visible=True, | |
) | |
return filter_component#.value | |
block = gr.Blocks() | |
with block: | |
gr.Markdown( | |
LEADERBORAD_INTRODUCTION | |
) | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
# Table 0 | |
with gr.TabItem("📊 VBench", elem_id="vbench-tab-table", id=1): | |
with gr.Row(): | |
with gr.Accordion("Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
elem_id="citation-button", | |
lines=14, | |
) | |
gr.Markdown( | |
TABLE_INTRODUCTION | |
) | |
with gr.Row(): | |
with gr.Column(scale=0.2): | |
choosen_q = gr.Button("Select Quality Dimensions") | |
choosen_s = gr.Button("Select Semantic Dimensions") | |
# enable_b = gr.Button("Select All") | |
disable_b = gr.Button("Deselect All") | |
with gr.Column(scale=0.8): | |
# selection for column part: | |
checkbox_group = gr.CheckboxGroup( | |
choices=TASK_INFO, | |
value=DEFAULT_INFO, | |
label="Evaluation Dimension", | |
interactive=True, | |
) | |
data_component = gr.components.Dataframe( | |
value=get_baseline_df, | |
headers=COLUMN_NAMES, | |
type="pandas", | |
datatype=DATA_TITILE_TYPE, | |
interactive=False, | |
visible=True, | |
height=700, | |
) | |
choosen_q.click(choose_all_quailty, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group], outputs=data_component) | |
choosen_s.click(choose_all_semantic, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group], outputs=data_component) | |
# enable_b.click(enable_all, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group], outputs=data_component) | |
disable_b.click(disable_all, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group], outputs=data_component) | |
checkbox_group.change(fn=on_filter_model_size_method_change, inputs=[ checkbox_group], outputs=data_component) | |
with gr.TabItem("Video Quaity", elem_id="vbench-tab-table", id=2): | |
with gr.Accordion("INSTRUCTION", open=False): | |
citation_button = gr.Textbox( | |
value=QUALITY_CLAIM_TEXT, | |
label="", | |
elem_id="quality-button", | |
lines=2, | |
) | |
with gr.Row(): | |
with gr.Column(scale=1.0): | |
# selection for column part: | |
checkbox_group_quality = gr.CheckboxGroup( | |
choices=QUALITY_TAB, | |
value=QUALITY_TAB, | |
label="Evaluation Quality Dimension", | |
interactive=True, | |
) | |
data_component_quality = gr.components.Dataframe( | |
value=get_baseline_df_quality, | |
headers=COLUMN_NAMES_QUALITY, | |
type="pandas", | |
datatype=DATA_TITILE_TYPE, | |
interactive=False, | |
visible=True, | |
) | |
checkbox_group_quality.change(fn=on_filter_model_size_method_change_quality, inputs=[checkbox_group_quality], outputs=data_component_quality) | |
with gr.TabItem("VBench-I2V", elem_id="vbench-tab-table", id=3): | |
with gr.Accordion("NOTE", open=False): | |
i2v_note_button = gr.Textbox( | |
value=I2V_CLAIM_TEXT, | |
label="", | |
elem_id="quality-button", | |
lines=3, | |
) | |
with gr.Row(): | |
with gr.Column(scale=1.0): | |
# selection for column part: | |
checkbox_group_i2v = gr.CheckboxGroup( | |
choices=I2V_TAB, | |
value=I2V_TAB, | |
label="Evaluation Quality Dimension", | |
interactive=True, | |
) | |
data_component_i2v = gr.components.Dataframe( | |
value=get_baseline_df_i2v, | |
headers=COLUMN_NAMES_I2V, | |
type="pandas", | |
datatype=I2V_TITILE_TYPE, | |
interactive=False, | |
visible=True, | |
) | |
checkbox_group_i2v.change(fn=on_filter_model_size_method_change_i2v, inputs=[checkbox_group_i2v], outputs=data_component_i2v) | |
# table 2 | |
with gr.TabItem("📝 About", elem_id="mvbench-tab-table", id=4): | |
gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text") | |
# table 3 | |
with gr.TabItem("🚀 Submit here! ", elem_id="mvbench-tab-table", id=4): | |
gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text") | |
with gr.Row(): | |
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text") | |
with gr.Row(): | |
gr.Markdown("# ✉️✨ Submit your model evaluation json file here!", elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
model_name_textbox = gr.Textbox( | |
label="Model name", placeholder="LaVie" | |
) | |
revision_name_textbox = gr.Textbox( | |
label="Revision Model Name", placeholder="LaVie" | |
) | |
with gr.Column(): | |
model_link = gr.Textbox( | |
label="Model Link", placeholder="https://huggingface.co/decapoda-research/llama-7b-hf" | |
) | |
with gr.Column(): | |
input_file = gr.components.File(label = "Click to Upload a ZIP File", file_count="single", type='binary') | |
submit_button = gr.Button("Submit Eval") | |
submission_result = gr.Markdown() | |
submit_button.click( | |
add_new_eval, | |
inputs = [ | |
input_file, | |
model_name_textbox, | |
revision_name_textbox, | |
model_link, | |
], | |
) | |
def refresh_data(): | |
value1 = get_baseline_df() | |
return value1 | |
with gr.Row(): | |
data_run = gr.Button("Refresh") | |
data_run.click(on_filter_model_size_method_change, inputs=[checkbox_group], outputs=data_component) | |
block.launch() |