File size: 4,948 Bytes
2ae3b27
 
35a89f7
11429eb
f063aad
 
 
 
35a89f7
c1f5a69
2ae3b27
 
 
 
 
 
59f1f35
2ae3b27
 
 
 
 
 
 
 
 
 
c1f5a69
 
 
 
 
 
4d42795
 
2ae3b27
59f1f35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85ae27d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1f5a69
2ae3b27
 
 
 
 
 
 
df9540e
2ae3b27
 
 
df9540e
f7ea508
 
 
2ae3b27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1f5a69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb40faa
c1f5a69
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
# this is .py for store constants 
MODEL_INFO = [
    "name",
    "Selected Score",
    "Overall Score",
    "Quality Score",
    "Semantic Score",
    ]
TASK_INFO = [
    "subject consistency",
    "background consistency",
    "temporal flickering",
    "motion smoothness",
    "aesthetic quality",
    "imaging quality",
    "dynamic degree",
    "object class",
    "multiple objects",
    "human action",
    "color",
    "spatial relationship",
    "scene",
    "appearance style",
    "temporal style",
    "overall consistency"]

DEFAULT_INFO = [
    "subject consistency",
    "background consistency",
    "temporal flickering",
    "motion smoothness",
    "aesthetic quality",
    "imaging quality"
    ]

QUALITY_LIST = [ 
    "subject consistency",
    "background consistency",
    "temporal flickering",
    "motion smoothness",
    "aesthetic quality",
    "imaging quality",
    "dynamic degree"]

SEMANTIC_LIST = [
    "object class",
    "multiple objects",
    "human action",
    "color",
    "spatial relationship",
    "scene",
    "appearance style",
    "temporal style",
    "overall consistency"
]

DIM_WEIGHT = {
    "subject consistency":1,
    "background consistency":1,
    "temporal flickering":1,
    "motion smoothness":1,
    "aesthetic quality":1,
    "imaging quality":1,
    "dynamic degree":0.5,
    "object class":1,
    "multiple objects":1,
    "human action":1,
    "color":1,
    "spatial relationship":1,
    "scene":1,
    "appearance style":1,
    "temporal style":1,
    "overall consistency":1
}

DATA_TITILE_TYPE = ['markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number']

SUBMISSION_NAME = "vbench_leaderboard_submission"
SUBMISSION_URL = os.path.join("https://huggingface.co/datasets/Vchitect/", SUBMISSION_NAME)
CSV_DIR = "./vbench_leaderboard_submission/results.csv"

COLUMN_NAMES = MODEL_INFO + TASK_INFO

LEADERBORAD_INTRODUCTION = """# VBench Leaderboard
    
    πŸ† Welcome to the leaderboard of the VBench! 🎦

    Please follow the instructions in [VBench](https://github.com/Vchitect/VBench?tab=readme-ov-file#usage) to upload the generated `result.json` file here. After clicking the `Submit Eval` button, click the `Refresh` button.

    ## ⚠ Please note that you need to obtain the file `evaluation_results/*eval_results.json` by running [VBench Github](https:) and upload the evaluation results. 
    Uploading generated videos or images of the model is invalid!
    """

SUBMIT_INTRODUCTION = """# Submit on VBench Benchmark Introduction
"""

TABLE_INTRODUCTION = """
    """

LEADERBORAD_INFO = """
       VBench, a comprehensive benchmark suite for video generative models. We design a comprehensive and hierarchical Evaluation Dimension Suite to decompose "video generation quality" into multiple well-defined dimensions to facilitate fine-grained and objective evaluation. For each dimension and each content category, we carefully design a Prompt Suite as test cases, and sample Generated Videos from a set of video generation models. For each evaluation dimension, we specifically design an Evaluation Method Suite, which uses carefully crafted method or designated pipeline for automatic objective evaluation. We also conduct Human Preference Annotation for the generated videos for each dimension, and show that VBench evaluation results are well aligned with human perceptions. VBench can provide valuable insights from multiple perspectives.
"""

CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@article{huang2023vbench,
     title={{VBench}: Comprehensive Benchmark Suite for Video Generative Models},
     author={Huang, Ziqi and He, Yinan and Yu, Jiashuo and Zhang, Fan and Si, Chenyang and Jiang, Yuming and Zhang, Yuanhan and Wu, Tianxing and Jin, Qingyang and Chanpaisit, Nattapol and Wang, Yaohui and Chen, Xinyuan and Wang, Limin and Lin, Dahua and Qiao, Yu and Liu, Ziwei},
     journal={arXiv preprint arXiv:2311.17982},
     year={2023}
}"""

NORMALIZE_DIC = {
  "subject consistency": {"Min": 0.1462, "Max": 1.0},
  "background consistency": {"Min": 0.2615, "Max": 1.0},
  "temporal flickering": {"Min": 0.6293, "Max": 1.0},
  "motion smoothness": {"Min": 0.706, "Max": 0.9975},
  "dynamic degree": {"Min": 0.0, "Max": 1.0},
  "aesthetic quality": {"Min": 0.0, "Max": 1.0},
  "imaging quality": {"Min": 0.0, "Max": 1.0},
  "object class": {"Min": 0.0, "Max": 1.0},
  "multiple objects": {"Min": 0.0, "Max": 1.0},
  "human action": {"Min": 0.0, "Max": 1.0},
  "color": {"Min": 0.0, "Max": 1.0},
  "spatial relationship": {"Min": 0.0, "Max": 1.0},
  "scene": {"Min": 0.0, "Max": 0.8222},
  "appearance style": {"Min": 0.0009, "Max": 0.2855},
  "temporal style": {"Min": 0.0, "Max": 0.364},
  "overall consistency": {"Min": 0.0, "Max": 0.364}
}