Spaces:
Running
Running
File size: 4,947 Bytes
2ae3b27 35a89f7 11429eb f063aad 35a89f7 c1f5a69 0988648 2ae3b27 0988648 2ae3b27 0988648 2ae3b27 c1f5a69 0988648 4d42795 2ae3b27 59f1f35 0988648 59f1f35 0988648 59f1f35 0988648 59f1f35 0988648 59f1f35 85ae27d 949c917 0988648 949c917 0988648 949c917 85ae27d c1f5a69 2ae3b27 df9540e 2ae3b27 df9540e 2ae3b27 481d9fe 2ae3b27 c1f5a69 949c917 6a73802 949c917 6a73802 949c917 c1f5a69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import os
# this is .py for store constants
MODEL_INFO = [
"name",
"Selected Score",
"Overall Score",
"Quality Score",
"Semantic Score",
]
TASK_INFO = [
"subject\nconsistency",
"background\nconsistency",
"temporal\nflickering",
"motion\nsmoothness",
"aesthetic\nquality",
"imaging\nquality",
"dynamic\ndegree",
"object\nclass",
"multiple\nobjects",
"human\naction",
"color",
"spatial\nrelationship",
"scene",
"appearance\nstyle",
"temporal\nstyle",
"overall\nconsistency"]
DEFAULT_INFO = [
"subject\nconsistency",
"background\nconsistency",
"temporal\nflickering",
"motion\nsmoothness",
"aesthetic\nquality",
"imaging\nquality",
]
QUALITY_LIST = [
"subject\nconsistency",
"background\nconsistency",
"temporal\nflickering",
"motion\nsmoothness",
"aesthetic\nquality",
"imaging\nquality",
"dynamic\ndegree",]
SEMANTIC_LIST = [
"object\nclass",
"multiple\nobjects",
"human\naction",
"color",
"spatial\nrelationship",
"scene",
"appearance\nstyle",
"temporal\nstyle",
"overall\nconsistency"
]
DIM_WEIGHT = {
"subject\\nconsistency":1,
"background\\nconsistency":1,
"temporal\\nflickering":1,
"motion\\nsmoothness":1,
"aesthetic\\nquality":1,
"imaging\\nquality":1,
"dynamic\\ndegree":0.5,
"object\\nclass":1,
"multiple\\nobjects":1,
"human\\naction":1,
"color":1,
"spatial\\nrelationship":1,
"scene":1,
"appearance\\nstyle":1,
"temporal\\nstyle":1,
"overall\\nconsistency":1
}
DATA_TITILE_TYPE = ['markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number']
SUBMISSION_NAME = "vbench_leaderboard_submission"
SUBMISSION_URL = os.path.join("https://huggingface.co/datasets/Vchitect/", SUBMISSION_NAME)
CSV_DIR = "./vbench_leaderboard_submission/results.csv"
COLUMN_NAMES = MODEL_INFO + TASK_INFO
LEADERBORAD_INTRODUCTION = """# VBench Leaderboard
π Welcome to the leaderboard of the VBench! π¦
Please follow the instructions in [VBench](https://github.com/Vchitect/VBench?tab=readme-ov-file#usage) to upload the generated `result.json` file here. After clicking the `Submit Eval` button, click the `Refresh` button.
"""
SUBMIT_INTRODUCTION = """# Submit on VBench Benchmark Introduction
## β Please note that you need to obtain the file `evaluation_results/*eval_results.json` by running [VBench Github](https:) and upload the evaluation results.
Uploading generated videos or images of the model is invalid!
"""
TABLE_INTRODUCTION = """
"""
LEADERBORAD_INFO = """
VBench, a comprehensive benchmark suite for video generative models. We design a comprehensive and hierarchical Evaluation Dimension Suite to decompose "video generation quality" into multiple well-defined dimensions to facilitate fine-grained and objective evaluation. For each dimension and each content category, we carefully design a Prompt Suite as test cases, and sample Generated Videos from a set of video generation models. For each evaluation dimension, we specifically design an Evaluation Method Suite, which uses carefully crafted method or designated pipeline for automatic objective evaluation. We also conduct Human Preference Annotation for the generated videos for each dimension, and show that VBench evaluation results are well aligned with human perceptions. VBench can provide valuable insights from multiple perspectives.
"""
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@article{huang2023vbench,
title={{VBench}: Comprehensive Benchmark Suite for Video Generative Models},
author={Huang, Ziqi and He, Yinan and Yu, Jiashuo and Zhang, Fan and Si, Chenyang and Jiang, Yuming and Zhang, Yuanhan and Wu, Tianxing and Jin, Qingyang and Chanpaisit, Nattapol and Wang, Yaohui and Chen, Xinyuan and Wang, Limin and Lin, Dahua and Qiao, Yu and Liu, Ziwei},
journal={arXiv preprint arXiv:2311.17982},
year={2023}
}"""
NORMALIZE_DIC = {
"subject\\nconsistency": {"Min": 0.1462, "Max": 1.0},
"background\\nconsistency": {"Min": 0.2615, "Max": 1.0},
"temporal\\nflickering": {"Min": 0.6293, "Max": 1.0},
"motion\\nsmoothness": {"Min": 0.706, "Max": 0.9975},
"dynamic\\ndegree": {"Min": 0.0, "Max": 1.0},
"aesthetic\\nquality": {"Min": 0.0, "Max": 1.0},
"imaging\\nquality": {"Min": 0.0, "Max": 1.0},
"object\\nclass": {"Min": 0.0, "Max": 1.0},
"multiple\\nobjects": {"Min": 0.0, "Max": 1.0},
"human\\naction": {"Min": 0.0, "Max": 1.0},
"color": {"Min": 0.0, "Max": 1.0},
"spatial\\nrelationship": {"Min": 0.0, "Max": 1.0},
"scene": {"Min": 0.0, "Max": 0.8222},
"appearance\\nstyle": {"Min": 0.0009, "Max": 0.2855},
"temporal\\nstyle": {"Min": 0.0, "Max": 0.364},
"overall\\nconsistency": {"Min": 0.0, "Max": 0.364}
} |