File size: 10,999 Bytes
b89a51c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from __future__ import generator_stop
from exp_replay import ExperienceReplay
import numpy as np
import tensorflow.contrib.slim as slim
import tensorflow as tf
import re
from processimage import processimage


class DQN:

    def __init__(self,

            env,

            batchsize=64,

            pic_size=(96, 96),

            num_frame_stack=3,

            gamma=0.95,

            frame_skip=3,

            train_freq=3,

            initial_epsilon=1,

            min_epsilon=0.05,

            render=False,

            epsilon_decay_steps=int(100000),

            min_experience_size=int(1000),

            experience_capacity=int(100000),

            target_network_update_freq=1000,

            regularization = 1e-6,

            optimizer_params = None,

            action_map=None

    ):
        self.exp_history = ExperienceReplay(
            num_frame_stack,
            capacity=experience_capacity,
            pic_size=pic_size
        )

        # in playing mode we don't store the experience to agent history
        # but this cache is still needed to get the current frame stack
        self.playing_cache = ExperienceReplay(
            num_frame_stack,
            capacity=num_frame_stack * 5 + 10,
            pic_size=pic_size
        )

        if action_map is not None:
            self.dim_actions = len(action_map)
        else:
            self.dim_actions = env.action_space.n

        self.target_network_update_freq = target_network_update_freq
        self.action_map = action_map
        self.env = env
        self.batchsize = batchsize
        self.num_frame_stack = num_frame_stack
        self.gamma = gamma
        self.frame_skip = frame_skip
        self.train_freq = train_freq
        self.initial_epsilon = initial_epsilon
        self.min_epsilon = min_epsilon
        self.epsilon_decay_steps = epsilon_decay_steps
        self.render = render
        self.min_experience_size = min_experience_size
        self.pic_size = pic_size
        self.regularization = regularization
        # These default magic values always work with Adam
        self.global_step = tf.Variable(0, trainable=False)
        self.increment_global_step_op = tf.assign(self.global_step, self.global_step+1)
        self.decayed_lr = tf.train.exponential_decay(0.001, self.global_step, 200000, 0.7, staircase=False)
        lr = self.decayed_lr
        # lr = 0.001
        self.optimizer_params = optimizer_params or dict(learning_rate=lr, epsilon=1e-7)

        self.do_training = True
        self.playing_epsilon = 0.0
        self.session = None

        self.state_size = (self.num_frame_stack,) + self.pic_size
        self.global_counter = 0
        self.episode_counter = 0

    def build_graph(self):
        input_dim_general = (None, self.pic_size[0], self.pic_size[1], self.num_frame_stack)   # (None, 4, 96, 96) changed to (None, 96, 96, 4)
        input_dim_with_batch = (self.batchsize, self.pic_size[0], self.pic_size[1], self.num_frame_stack) #Input dimensions: (64, 4, 96, 96) changed to (64, 96, 96, 4)

        self.input_prev_state = tf.compat.v1.placeholder(tf.float32, input_dim_general, "prev_state")
        self.input_next_state = tf.compat.v1.placeholder(tf.float32, input_dim_with_batch, "next_state")
        self.input_reward = tf.compat.v1.placeholder(tf.float32, self.batchsize, "reward")
        self.input_actions = tf.compat.v1.placeholder(tf.int32, self.batchsize, "actions")
        self.input_done_mask = tf.compat.v1.placeholder(tf.int32, self.batchsize, "done_mask")

        # The target Q-values come from the fixed network
        with tf.compat.v1.variable_scope("fixed"): #64 96 96 3
            # Create target network which is gonna be fixed and updated every C parameters
            qsa_targets = self.create_network(self.input_next_state, trainable=False)

        with tf.compat.v1.variable_scope("train"): # ? 96 96 3
            # Create Prediction/Estimate network which will be trained/updated every 3 frames
            # Create Prediction/Estimate network which will be trained/updated every 3 frames
            qsa_estimates = self.create_network(self.input_prev_state, trainable=True)

        self.best_action = tf.argmax(qsa_estimates, axis=1)

        not_done = tf.cast(tf.logical_not(tf.cast(self.input_done_mask, "bool")), "float32")
        # select the chosen action from each row
        # in numpy this is qsa_estimates[range(batchsize), self.input_actions]
        action_slice = tf.stack([tf.range(0, self.batchsize), self.input_actions], axis=1)
        #
        q_estimates_for_input_action = tf.gather_nd(qsa_estimates, action_slice)

        #Taken from paper : Loss = [(r + gamma*max Qtarget)-(Q estimate)^2]
        q_target = tf.reduce_max(qsa_targets, -1) * self.gamma * not_done + self.input_reward
        training_loss = tf.nn.l2_loss(q_target - q_estimates_for_input_action) / self.batchsize

        # reg_loss = tf.add_n(tf.losses.get_regularization_losses())
        reg_loss = [0]

        #Adam optimizer
        optimizer = tf.train.AdamOptimizer(**(self.optimizer_params))
        #Adadelta optimizer:
        # optimizer = tf.train.RMSPropOptimizer(**(self.optimizer_params))

        self.train_op = optimizer.minimize(reg_loss + training_loss)

        train_params = self.get_variables("train")
        fixed_params = self.get_variables("fixed")


        assert (len(train_params) == len(fixed_params))
        self.copy_network_ops = [tf.assign(fixed_v, train_v) for train_v, fixed_v in zip(train_params, fixed_params)]

    def get_variables(self, scope):
        vars = [t for t in tf.compat.v1.global_variables()
            if "%s/" % scope in t.name and "Adam" not in t.name]
        return sorted(vars, key=lambda v: v.name)

    def create_network(self, input, trainable):
        if trainable:
            # wr = None
            wr = tf.compat.v1.keras.regularizers.l2(l=self.regularization)
        else:
            wr = None

        net = tf.layers.conv2d(inputs=input, filters=8, kernel_size=(7,7), strides=4, name='conv1', kernel_regularizer=wr)
        net = tf.nn.relu(net)
        net = tf.nn.max_pool2d(net, ksize=2, strides=2, padding='SAME')
        net = tf.layers.conv2d(inputs=net, filters=16, kernel_size=(3, 3), strides=1, name='conv2',
                               kernel_regularizer=wr)
        net = tf.nn.relu(net)
        net = tf.nn.max_pool2d(net, ksize=2, strides=2, padding='SAME')
        net = tf.layers.flatten(net)
        net = tf.layers.dense(net, 400, activation=tf.nn.relu, kernel_regularizer=wr)
        # net = tf.layers.dropout(net, 0.5)
        q_state_action_values = tf.layers.dense(net, self.dim_actions, activation=None, kernel_regularizer=wr)

        return q_state_action_values

    # def check_early_stop(self, reward, totalreward):
    #     return False, 0.0

    def get_random_action(self):
        return np.random.choice(self.dim_actions)

    def get_epsilon(self):
        if not self.do_training:
            return self.playing_epsilon
        elif self.global_counter >= self.epsilon_decay_steps:
            return self.min_epsilon
        else:
            # linear decay
            r = 1.0 - self.global_counter / float(self.epsilon_decay_steps)
            return self.min_epsilon + (self.initial_epsilon - self.min_epsilon) * r

    def train(self):
        batch = self.exp_history.sample_mini_batch(self.batchsize)
        # Feed dict
        fd = {
            self.input_reward: "reward",
            self.input_prev_state: "prev_state",
            self.input_next_state: "next_state",
            self.input_actions: "actions",
            self.input_done_mask: "done_mask"
        }
        fd1 = {ph: batch[k] for ph, k in fd.items()}
        self.session.run([self.train_op], fd1)

    def play_episode(self, render, load_checkpoint):
        eh = (
            self.exp_history if self.do_training
            else self.playing_cache
        )
        total_reward = 0
        total_score = 0
        frames_in_episode = 0

        first_frame = self.env.reset()
        first_frame_pp = processimage.process_image(first_frame)

        eh.start_new_episode(first_frame_pp)

        epsilon = self.get_epsilon()
        while True:
            if np.random.rand() > epsilon and not load_checkpoint:
                action_idx = self.session.run(
                    self.best_action,
                    {self.input_prev_state: eh.current_state()[np.newaxis, ...]}
                )[0]
            elif not load_checkpoint:
                action_idx = self.get_random_action()
            elif load_checkpoint:
                action_idx = self.session.run(
                    self.best_action,
                    {self.input_prev_state: eh.current_state()[np.newaxis, ...]}
                )[0]

            if self.action_map is not None:
                action = self.action_map[action_idx]
            else:
                action = action_idx

            reward = 0
            score = 0
            for _ in range(self.frame_skip):
                observation, r, done, info = self.env.step(action)
                if render:
                    self.env.render()


                score += r
                #Increase rewards on the last frames if reward is positive
                if r > 0:
                    r = r + frames_in_episode*0.2 #in 230 frames late game it adds +- 50 reward to tiles
                reward += r

                if done:
                    break

            early_done, punishment = self.check_early_stop(reward, total_reward, frames_in_episode)
            if early_done:
                reward += punishment

            done = done or early_done

            total_reward += reward
            total_score += score
            frames_in_episode += 1
            observation = processimage.process_image(observation)
            eh.add_experience(observation, action_idx, done, reward)

            if self.do_training:
                self.global_counter += 1
                step = self.session.run(self.increment_global_step_op)
                if self.global_counter % self.target_network_update_freq:
                    self.update_target_network()
                train_cond = (
                    self.exp_history.counter >= self.min_experience_size and
                    self.global_counter % self.train_freq == 0
                )
                if train_cond:
                    self.train()

            if done:
                if self.do_training:
                    self.episode_counter += 1

                return total_score, total_reward, frames_in_episode, epsilon

    def update_target_network(self):
        self.session.run(self.copy_network_ops)