Spaces:
Configuration error
Configuration error
File size: 10,999 Bytes
b89a51c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
from __future__ import generator_stop
from exp_replay import ExperienceReplay
import numpy as np
import tensorflow.contrib.slim as slim
import tensorflow as tf
import re
from processimage import processimage
class DQN:
def __init__(self,
env,
batchsize=64,
pic_size=(96, 96),
num_frame_stack=3,
gamma=0.95,
frame_skip=3,
train_freq=3,
initial_epsilon=1,
min_epsilon=0.05,
render=False,
epsilon_decay_steps=int(100000),
min_experience_size=int(1000),
experience_capacity=int(100000),
target_network_update_freq=1000,
regularization = 1e-6,
optimizer_params = None,
action_map=None
):
self.exp_history = ExperienceReplay(
num_frame_stack,
capacity=experience_capacity,
pic_size=pic_size
)
# in playing mode we don't store the experience to agent history
# but this cache is still needed to get the current frame stack
self.playing_cache = ExperienceReplay(
num_frame_stack,
capacity=num_frame_stack * 5 + 10,
pic_size=pic_size
)
if action_map is not None:
self.dim_actions = len(action_map)
else:
self.dim_actions = env.action_space.n
self.target_network_update_freq = target_network_update_freq
self.action_map = action_map
self.env = env
self.batchsize = batchsize
self.num_frame_stack = num_frame_stack
self.gamma = gamma
self.frame_skip = frame_skip
self.train_freq = train_freq
self.initial_epsilon = initial_epsilon
self.min_epsilon = min_epsilon
self.epsilon_decay_steps = epsilon_decay_steps
self.render = render
self.min_experience_size = min_experience_size
self.pic_size = pic_size
self.regularization = regularization
# These default magic values always work with Adam
self.global_step = tf.Variable(0, trainable=False)
self.increment_global_step_op = tf.assign(self.global_step, self.global_step+1)
self.decayed_lr = tf.train.exponential_decay(0.001, self.global_step, 200000, 0.7, staircase=False)
lr = self.decayed_lr
# lr = 0.001
self.optimizer_params = optimizer_params or dict(learning_rate=lr, epsilon=1e-7)
self.do_training = True
self.playing_epsilon = 0.0
self.session = None
self.state_size = (self.num_frame_stack,) + self.pic_size
self.global_counter = 0
self.episode_counter = 0
def build_graph(self):
input_dim_general = (None, self.pic_size[0], self.pic_size[1], self.num_frame_stack) # (None, 4, 96, 96) changed to (None, 96, 96, 4)
input_dim_with_batch = (self.batchsize, self.pic_size[0], self.pic_size[1], self.num_frame_stack) #Input dimensions: (64, 4, 96, 96) changed to (64, 96, 96, 4)
self.input_prev_state = tf.compat.v1.placeholder(tf.float32, input_dim_general, "prev_state")
self.input_next_state = tf.compat.v1.placeholder(tf.float32, input_dim_with_batch, "next_state")
self.input_reward = tf.compat.v1.placeholder(tf.float32, self.batchsize, "reward")
self.input_actions = tf.compat.v1.placeholder(tf.int32, self.batchsize, "actions")
self.input_done_mask = tf.compat.v1.placeholder(tf.int32, self.batchsize, "done_mask")
# The target Q-values come from the fixed network
with tf.compat.v1.variable_scope("fixed"): #64 96 96 3
# Create target network which is gonna be fixed and updated every C parameters
qsa_targets = self.create_network(self.input_next_state, trainable=False)
with tf.compat.v1.variable_scope("train"): # ? 96 96 3
# Create Prediction/Estimate network which will be trained/updated every 3 frames
# Create Prediction/Estimate network which will be trained/updated every 3 frames
qsa_estimates = self.create_network(self.input_prev_state, trainable=True)
self.best_action = tf.argmax(qsa_estimates, axis=1)
not_done = tf.cast(tf.logical_not(tf.cast(self.input_done_mask, "bool")), "float32")
# select the chosen action from each row
# in numpy this is qsa_estimates[range(batchsize), self.input_actions]
action_slice = tf.stack([tf.range(0, self.batchsize), self.input_actions], axis=1)
#
q_estimates_for_input_action = tf.gather_nd(qsa_estimates, action_slice)
#Taken from paper : Loss = [(r + gamma*max Qtarget)-(Q estimate)^2]
q_target = tf.reduce_max(qsa_targets, -1) * self.gamma * not_done + self.input_reward
training_loss = tf.nn.l2_loss(q_target - q_estimates_for_input_action) / self.batchsize
# reg_loss = tf.add_n(tf.losses.get_regularization_losses())
reg_loss = [0]
#Adam optimizer
optimizer = tf.train.AdamOptimizer(**(self.optimizer_params))
#Adadelta optimizer:
# optimizer = tf.train.RMSPropOptimizer(**(self.optimizer_params))
self.train_op = optimizer.minimize(reg_loss + training_loss)
train_params = self.get_variables("train")
fixed_params = self.get_variables("fixed")
assert (len(train_params) == len(fixed_params))
self.copy_network_ops = [tf.assign(fixed_v, train_v) for train_v, fixed_v in zip(train_params, fixed_params)]
def get_variables(self, scope):
vars = [t for t in tf.compat.v1.global_variables()
if "%s/" % scope in t.name and "Adam" not in t.name]
return sorted(vars, key=lambda v: v.name)
def create_network(self, input, trainable):
if trainable:
# wr = None
wr = tf.compat.v1.keras.regularizers.l2(l=self.regularization)
else:
wr = None
net = tf.layers.conv2d(inputs=input, filters=8, kernel_size=(7,7), strides=4, name='conv1', kernel_regularizer=wr)
net = tf.nn.relu(net)
net = tf.nn.max_pool2d(net, ksize=2, strides=2, padding='SAME')
net = tf.layers.conv2d(inputs=net, filters=16, kernel_size=(3, 3), strides=1, name='conv2',
kernel_regularizer=wr)
net = tf.nn.relu(net)
net = tf.nn.max_pool2d(net, ksize=2, strides=2, padding='SAME')
net = tf.layers.flatten(net)
net = tf.layers.dense(net, 400, activation=tf.nn.relu, kernel_regularizer=wr)
# net = tf.layers.dropout(net, 0.5)
q_state_action_values = tf.layers.dense(net, self.dim_actions, activation=None, kernel_regularizer=wr)
return q_state_action_values
# def check_early_stop(self, reward, totalreward):
# return False, 0.0
def get_random_action(self):
return np.random.choice(self.dim_actions)
def get_epsilon(self):
if not self.do_training:
return self.playing_epsilon
elif self.global_counter >= self.epsilon_decay_steps:
return self.min_epsilon
else:
# linear decay
r = 1.0 - self.global_counter / float(self.epsilon_decay_steps)
return self.min_epsilon + (self.initial_epsilon - self.min_epsilon) * r
def train(self):
batch = self.exp_history.sample_mini_batch(self.batchsize)
# Feed dict
fd = {
self.input_reward: "reward",
self.input_prev_state: "prev_state",
self.input_next_state: "next_state",
self.input_actions: "actions",
self.input_done_mask: "done_mask"
}
fd1 = {ph: batch[k] for ph, k in fd.items()}
self.session.run([self.train_op], fd1)
def play_episode(self, render, load_checkpoint):
eh = (
self.exp_history if self.do_training
else self.playing_cache
)
total_reward = 0
total_score = 0
frames_in_episode = 0
first_frame = self.env.reset()
first_frame_pp = processimage.process_image(first_frame)
eh.start_new_episode(first_frame_pp)
epsilon = self.get_epsilon()
while True:
if np.random.rand() > epsilon and not load_checkpoint:
action_idx = self.session.run(
self.best_action,
{self.input_prev_state: eh.current_state()[np.newaxis, ...]}
)[0]
elif not load_checkpoint:
action_idx = self.get_random_action()
elif load_checkpoint:
action_idx = self.session.run(
self.best_action,
{self.input_prev_state: eh.current_state()[np.newaxis, ...]}
)[0]
if self.action_map is not None:
action = self.action_map[action_idx]
else:
action = action_idx
reward = 0
score = 0
for _ in range(self.frame_skip):
observation, r, done, info = self.env.step(action)
if render:
self.env.render()
score += r
#Increase rewards on the last frames if reward is positive
if r > 0:
r = r + frames_in_episode*0.2 #in 230 frames late game it adds +- 50 reward to tiles
reward += r
if done:
break
early_done, punishment = self.check_early_stop(reward, total_reward, frames_in_episode)
if early_done:
reward += punishment
done = done or early_done
total_reward += reward
total_score += score
frames_in_episode += 1
observation = processimage.process_image(observation)
eh.add_experience(observation, action_idx, done, reward)
if self.do_training:
self.global_counter += 1
step = self.session.run(self.increment_global_step_op)
if self.global_counter % self.target_network_update_freq:
self.update_target_network()
train_cond = (
self.exp_history.counter >= self.min_experience_size and
self.global_counter % self.train_freq == 0
)
if train_cond:
self.train()
if done:
if self.do_training:
self.episode_counter += 1
return total_score, total_reward, frames_in_episode, epsilon
def update_target_network(self):
self.session.run(self.copy_network_ops)
|