test LLM 3
Browse files
app.py
CHANGED
@@ -1,24 +1,154 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import
|
4 |
-
|
|
|
|
|
|
|
5 |
import transformers
|
6 |
import torch
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
pipeline = transformers.pipeline(
|
12 |
"text-generation",
|
13 |
-
model=
|
14 |
model_kwargs={"torch_dtype": torch.bfloat16},
|
15 |
device="cuda",
|
16 |
)
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
messages = [
|
21 |
-
{"role": "system", "content":
|
22 |
{"role": "user", "content": message},
|
23 |
]
|
24 |
prompt = pipeline.tokenizer.apply_chat_template(
|
@@ -40,20 +170,66 @@ def chat_function(message, history, system_prompt,max_new_tokens,temperature):
|
|
40 |
top_p=0.9,
|
41 |
)
|
42 |
return outputs[0]["generated_text"][len(prompt):]
|
|
|
43 |
|
44 |
-
gr.
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import json
|
3 |
+
import librosa
|
4 |
+
import os
|
5 |
+
import soundfile as sf
|
6 |
+
import tempfile
|
7 |
+
import uuid
|
8 |
import transformers
|
9 |
import torch
|
10 |
+
import time
|
11 |
+
import spaces
|
12 |
+
|
13 |
+
from nemo.collections.asr.models import ASRModel
|
14 |
+
|
15 |
+
from transformers import GemmaTokenizer, AutoModelForCausalLM
|
16 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
17 |
+
from threading import Thread
|
18 |
+
|
19 |
+
# Set an environment variable
|
20 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
21 |
+
|
22 |
+
|
23 |
+
SAMPLE_RATE = 16000 # Hz
|
24 |
+
MAX_AUDIO_SECONDS = 40 # wont try to transcribe if longer than this
|
25 |
+
DESCRIPTION = '''
|
26 |
+
<div>
|
27 |
+
<h1 style='text-align: center'>MyAlexa: Voice Chat Assistant</h1>
|
28 |
+
<p style='text-align: center'>MyAlexa is a demo of a voice chat assistant with chat logs that accepts audio input and outputs an AI response. </p>
|
29 |
+
<p>This space uses <a href="https://huggingface.co/nvidia/canary-1b"><b>NVIDIA Canary 1B</b></a> for Automatic Speech-to-text Recognition (ASR), <a href="https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct"><b>Meta Llama 3 8B Insruct</b></a> for the large language model (LLM) and <a href="https://https://huggingface.co/docs/transformers/en/model_doc/vits"><b>VITS</b></a> for text to speech (TTS).</p>
|
30 |
+
<p>This demo accepts audio inputs not more than 40 seconds long.</p>
|
31 |
+
<p>Transcription and responses are limited to the English language.</p>
|
32 |
+
</div>
|
33 |
+
'''
|
34 |
+
PLACEHOLDER = """
|
35 |
+
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
36 |
+
<img src="https://i.ibb.co/S35q17Q/My-Alexa-Logo.png" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
|
37 |
+
<p style="font-size: 28px; margin-bottom: 2px; opacity: 0.65;">What's on your mind?</p>
|
38 |
+
</div>
|
39 |
+
"""
|
40 |
+
|
41 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
42 |
+
|
43 |
+
### ASR model
|
44 |
+
canary_model = ASRModel.from_pretrained("nvidia/canary-1b").to(device)
|
45 |
+
canary_model.eval()
|
46 |
|
47 |
+
# make sure beam size always 1 for consistency
|
48 |
+
canary_model.change_decoding_strategy(None)
|
49 |
+
decoding_cfg = canary_model.cfg.decoding
|
50 |
+
decoding_cfg.beam.beam_size = 1
|
51 |
+
canary_model.change_decoding_strategy(decoding_cfg)
|
52 |
+
|
53 |
+
### LLM model
|
54 |
+
llm_model_name = "meta-llama/Meta-Llama-3-8B-Instruct"
|
55 |
|
56 |
pipeline = transformers.pipeline(
|
57 |
"text-generation",
|
58 |
+
model=llm_model_name,
|
59 |
model_kwargs={"torch_dtype": torch.bfloat16},
|
60 |
device="cuda",
|
61 |
)
|
62 |
|
63 |
+
def convert_audio(audio_filepath, tmpdir, utt_id):
|
64 |
+
"""
|
65 |
+
Convert all files to monochannel 16 kHz wav files.
|
66 |
+
Do not convert and raise error if audio is too long.
|
67 |
+
Returns output filename and duration.
|
68 |
+
"""
|
69 |
+
|
70 |
+
data, sr = librosa.load(audio_filepath, sr=None, mono=True)
|
71 |
+
|
72 |
+
duration = librosa.get_duration(y=data, sr=sr)
|
73 |
+
|
74 |
+
if duration > MAX_AUDIO_SECONDS:
|
75 |
+
raise gr.Error(
|
76 |
+
f"This demo can transcribe up to {MAX_AUDIO_SECONDS} seconds of audio. "
|
77 |
+
"If you wish, you may trim the audio using the Audio viewer in Step 1 "
|
78 |
+
"(click on the scissors icon to start trimming audio)."
|
79 |
+
)
|
80 |
+
|
81 |
+
if sr != SAMPLE_RATE:
|
82 |
+
data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)
|
83 |
+
|
84 |
+
out_filename = os.path.join(tmpdir, utt_id + '.wav')
|
85 |
+
|
86 |
+
# save output audio
|
87 |
+
sf.write(out_filename, data, SAMPLE_RATE)
|
88 |
+
|
89 |
+
return out_filename, duration
|
90 |
+
|
91 |
+
def transcribe(audio_filepath):
|
92 |
+
"""
|
93 |
+
Transcribes a converted audio file.
|
94 |
+
Set to english language with punctuations.
|
95 |
+
Returns the output text.
|
96 |
+
"""
|
97 |
+
|
98 |
+
if audio_filepath is None:
|
99 |
+
raise gr.Error("Please provide some input audio: either upload an audio file or use the microphone")
|
100 |
+
|
101 |
+
utt_id = uuid.uuid4()
|
102 |
+
with tempfile.TemporaryDirectory() as tmpdir:
|
103 |
+
converted_audio_filepath, duration = convert_audio(audio_filepath, tmpdir, str(utt_id))
|
104 |
+
|
105 |
+
# make manifest file and save
|
106 |
+
manifest_data = {
|
107 |
+
"audio_filepath": converted_audio_filepath,
|
108 |
+
"source_lang": "en",
|
109 |
+
"target_lang": "en",
|
110 |
+
"taskname": "asr",
|
111 |
+
"pnc": "yes",
|
112 |
+
"answer": "predict",
|
113 |
+
"duration": str(duration),
|
114 |
+
}
|
115 |
+
|
116 |
+
manifest_filepath = os.path.join(tmpdir, f'{utt_id}.json')
|
117 |
+
|
118 |
+
with open(manifest_filepath, 'w') as fout:
|
119 |
+
line = json.dumps(manifest_data)
|
120 |
+
fout.write(line + '\n')
|
121 |
+
|
122 |
+
# call transcribe, passing in manifest filepath
|
123 |
+
output_text = canary_model.transcribe(manifest_filepath)[0]
|
124 |
+
|
125 |
+
return output_text
|
126 |
+
|
127 |
+
def add_message(history, message):
|
128 |
+
"""
|
129 |
+
Adds the input message in the chatbot.
|
130 |
+
Returns the updated chatbot with an empty input textbox.
|
131 |
+
"""
|
132 |
+
history.append((message, None))
|
133 |
+
return history
|
134 |
+
|
135 |
+
def bot(history,message):
|
136 |
+
"""
|
137 |
+
Prints the LLM's response in the chatbot
|
138 |
+
"""
|
139 |
+
response = bot_response(message, history, 0.7, 100)
|
140 |
+
#response = "bot_response(message)"
|
141 |
+
history[-1][1] = ""
|
142 |
+
for character in response:
|
143 |
+
history[-1][1] += character
|
144 |
+
time.sleep(0.05)
|
145 |
+
yield history
|
146 |
+
|
147 |
+
|
148 |
+
@spaces.GPU()
|
149 |
+
def bot_response(message, history, max_new_tokens, temperature):
|
150 |
messages = [
|
151 |
+
{"role": "system", "content": "You are a helpful AI assistant."},
|
152 |
{"role": "user", "content": message},
|
153 |
]
|
154 |
prompt = pipeline.tokenizer.apply_chat_template(
|
|
|
170 |
top_p=0.9,
|
171 |
)
|
172 |
return outputs[0]["generated_text"][len(prompt):]
|
173 |
+
|
174 |
|
175 |
+
with gr.Blocks(
|
176 |
+
title="MyAlexa",
|
177 |
+
css="""
|
178 |
+
textarea { font-size: 18px;}
|
179 |
+
""",
|
180 |
+
theme=gr.themes.Default(text_size=gr.themes.sizes.text_lg) # make text slightly bigger (default is text_md )
|
181 |
+
) as demo:
|
182 |
+
|
183 |
+
gr.HTML(DESCRIPTION)
|
184 |
+
chatbot = gr.Chatbot(
|
185 |
+
[],
|
186 |
+
elem_id="chatbot",
|
187 |
+
bubble_full_width=False,
|
188 |
+
placeholder=PLACEHOLDER,
|
189 |
+
label='MyAlexa'
|
190 |
+
)
|
191 |
+
with gr.Row():
|
192 |
+
with gr.Column():
|
193 |
+
gr.HTML(
|
194 |
+
"<p><b>Step 1:</b> Upload an audio file or record with your microphone.</p>"
|
195 |
+
)
|
196 |
+
|
197 |
+
audio_file = gr.Audio(sources=["microphone", "upload"], type="filepath")
|
198 |
+
|
199 |
+
|
200 |
+
with gr.Column():
|
201 |
+
|
202 |
+
gr.HTML("<p><b>Step 2:</b> Enter audio as input and wait for MyAlexa's response.</p>")
|
203 |
+
|
204 |
+
submit_button = gr.Button(
|
205 |
+
value="Submit audio",
|
206 |
+
variant="primary"
|
207 |
+
)
|
208 |
+
|
209 |
+
chat_input = gr.Textbox(
|
210 |
+
label="Transcribed text:",
|
211 |
+
interactive=False,
|
212 |
+
placeholder="Enter message",
|
213 |
+
elem_id="chat_input",
|
214 |
+
visible=True
|
215 |
+
)
|
216 |
+
gr.HTML("<p><b>Step 2:</b> Enter audio as input and wait for MyAlexa's response.</p>")
|
217 |
+
|
218 |
+
submit_button = gr.Button(
|
219 |
+
value="Submit audio",
|
220 |
+
variant="primary"
|
221 |
+
)
|
222 |
+
|
223 |
+
chat_msg = chat_input.change(add_message, [chatbot, chat_input], [chatbot])
|
224 |
+
bot_msg = chat_msg.then(bot, [chatbot, chat_input], chatbot, api_name="bot_response")
|
225 |
+
# bot_msg.then(lambda: gr.Textbox(interactive=False), None, [chat_input])
|
226 |
+
|
227 |
+
submit_button.click(
|
228 |
+
fn=transcribe,
|
229 |
+
inputs = [audio_file],
|
230 |
+
outputs = [chat_input]
|
231 |
+
)
|
232 |
+
|
233 |
+
demo.queue()
|
234 |
+
if __name__ == "__main__":
|
235 |
+
demo.launch()
|