MCQGen / app.py
ValakiJay1706's picture
Update app.py
47c4d2b verified
import streamlit as st
from transformers import T5ForConditionalGeneration, T5Tokenizer
import spacy
import nltk
from sklearn.feature_extraction.text import TfidfVectorizer
from rake_nltk import Rake
import pandas as pd
from fpdf import FPDF
import wikipediaapi
from functools import lru_cache
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('brown')
from nltk.tokenize import sent_tokenize
nltk.download('wordnet')
from nltk.corpus import wordnet
import random
import sense2vec
from wordcloud import WordCloud
import matplotlib.pyplot as plt
import json
import os
from sentence_transformers import SentenceTransformer, util
import textstat
from spellchecker import SpellChecker
from transformers import pipeline
import re
import pymupdf
import fitz # PyMuPDF
import pytesseract
from PIL import Image
import io
import uuid
import time
import asyncio
import aiohttp
import easyocr
# '-----------------'
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from email.mime.base import MIMEBase
from email import encoders
# '------------------'
print("***************************************************************")
st.set_page_config(
page_icon='cyclone',
page_title="Question Generator",
initial_sidebar_state="auto",
menu_items={
"About" : "Hi this our project."
}
)
st.set_option('deprecation.showPyplotGlobalUse',False)
class QuestionGenerationError(Exception):
"""Custom exception for question generation errors."""
pass
# Initialize Wikipedia API with a user agent
user_agent = 'QGen/1.2'
wiki_wiki = wikipediaapi.Wikipedia(user_agent= user_agent,language='en')
def get_session_id():
if 'session_id' not in st.session_state:
st.session_state.session_id = str(uuid.uuid4())
return st.session_state.session_id
def initialize_state(session_id):
if 'session_states' not in st.session_state:
st.session_state.session_states = {}
if session_id not in st.session_state.session_states:
st.session_state.session_states[session_id] = {
'generated_questions': [],
# add other state variables as needed
}
return st.session_state.session_states[session_id]
def get_state(session_id):
return st.session_state.session_states[session_id]
def set_state(session_id, key, value):
st.session_state.session_states[session_id][key] = value
@st.cache_resource
def load_model(modelname):
model_name = modelname
model = T5ForConditionalGeneration.from_pretrained(model_name)
tokenizer = T5Tokenizer.from_pretrained(model_name)
return model, tokenizer
# Load Spacy Model
@st.cache_resource
def load_nlp_models():
nlp = spacy.load("en_core_web_md")
s2v = sense2vec.Sense2Vec().from_disk('s2v_old')
return nlp, s2v
# Load Quality Assurance Models
@st.cache_resource
def load_qa_models():
# Initialize BERT model for sentence similarity
similarity_model = SentenceTransformer('all-MiniLM-L6-v2')
spell = SpellChecker()
return similarity_model, spell
with st.sidebar:
select_model = st.selectbox("Select Model", ("T5-large","T5-small"))
if select_model == "T5-large":
modelname = "DevBM/t5-large-squad"
elif select_model == "T5-small":
modelname = "AneriThakkar/flan-t5-small-finetuned"
nlp, s2v = load_nlp_models()
similarity_model, spell = load_qa_models()
context_model = similarity_model
model, tokenizer = load_model(modelname)
# Info Section
def display_info():
st.sidebar.title("Information")
st.sidebar.markdown("""
### Question Generator System
This system is designed to generate questions based on the provided context. It uses various NLP techniques and models to:
- Extract keywords from the text
- Map keywords to sentences
- Generate questions
- Provide multiple choice options
- Assess the quality of generated questions
#### Key Features:
- **Keyword Extraction:** Combines RAKE, TF-IDF, and spaCy for comprehensive keyword extraction.
- **Question Generation:** Utilizes a pre-trained T5 model for generating questions.
- **Options Generation:** Creates contextually relevant multiple-choice options.
- **Question Assessment:** Scores questions based on relevance, complexity, and spelling correctness.
- **Feedback Collection:** Allows users to rate the generated questions and provides statistics on feedback.
#### Customization Options:
- Number of beams for question generation
- Context window size for mapping keywords to sentences
- Number of questions to generate
- Additional display elements (context, answer, options, entity link, QA scores)
#### Outputs:
- Generated questions with multiple-choice options
- Download options for CSV and PDF formats
- Visualization of overall scores
""")
import fitz # PyMuPDF
from PIL import Image
import io
import easyocr
import numpy as np
def extract_text_from_pdf(pdf_path):
"""Extract text from the given PDF file."""
try:
pdf_file = fitz.open(pdf_path)
all_text = ""
for page_index in range(len(pdf_file)):
page = pdf_file.load_page(page_index)
text = page.get_text("text")
if text.strip(): # Check if the text is not empty
all_text += text.replace('\n', ' ') + " "
pdf_file.close()
if not all_text.strip():
print("No direct text found in the PDF.")
return all_text.strip() # Strip any leading/trailing whitespace
except Exception as e:
print(f"Error extracting text from PDF: {e}")
return ""
def extract_images_from_pdf(pdf_path):
"""Extract images from the given PDF file."""
try:
pdf_file = fitz.open(pdf_path)
images = []
for page_index in range(len(pdf_file)):
page = pdf_file.load_page(page_index)
image_list = page.get_images(full=True)
for img_index, img in enumerate(image_list):
xref = img[0]
base_image = pdf_file.extract_image(xref)
image_bytes = base_image["image"]
image_ext = base_image["ext"]
image = Image.open(io.BytesIO(image_bytes))
images.append(image)
pdf_file.close()
if not images:
print("No images found in the PDF.")
return images
except Exception as e:
print(f"Error extracting images from PDF: {e}")
return []
def recognize_text(image):
"""Recognize text from a single image."""
try:
reader = easyocr.Reader(['en'])
image_np = np.array(image) # Convert PIL image to numpy array
result = reader.readtext(image_np)
recognized_text = ""
for (bbox, text, prob) in result:
if prob > 0.2:
recognized_text += f'{text} '
if not recognized_text.strip():
print("No text recognized from the image.")
return recognized_text.strip() # Strip any leading/trailing whitespace
except Exception as e:
print(f"Error recognizing text from image: {e}")
return ""
def ocr_text_from_pdf(pdf_path):
"""Extract text from all images in the PDF."""
images = extract_images_from_pdf(pdf_path)
all_text = ""
for image in images:
text = recognize_text(image)
if text.strip(): # Check if the recognized text is not empty
all_text += text + " "
if not all_text.strip():
print("No OCR text found in the PDF images.")
return all_text.strip() # Strip any leading/trailing whitespace
def extract_all_text_from_pdf(pdf_path):
"""Extract both direct text and OCR text from a PDF."""
direct_text = extract_text_from_pdf(pdf_path)
ocr_text = ocr_text_from_pdf(pdf_path)
all_text = direct_text + " " + ocr_text + " "
if not all_text.strip():
print("No text extracted from the PDF.")
return all_text.strip() # Strip any leading/trailing whitespace
def save_feedback(question, answer, rating, options, context):
feedback_file = 'question_feedback.json'
if os.path.exists(feedback_file):
with open(feedback_file, 'r') as f:
feedback_data = json.load(f)
else:
feedback_data = []
tpl = {
'question' : question,
'answer' : answer,
'context' : context,
'options' : options,
'rating' : rating,
}
# feedback_data[question] = rating
feedback_data.append(tpl)
print(feedback_data)
with open(feedback_file, 'w') as f:
json.dump(feedback_data, f)
return feedback_file
# -----------------------------------------------------------------------------------------
def send_email_with_attachment(email_subject, email_body, recipient_emails, sender_email, sender_password, attachment_path):
msg = MIMEMultipart()
msg['From'] = sender_email
msg['To'] = ", ".join(recipient_emails) # Join the list of recipients with commas
msg['Subject'] = email_subject
msg.attach(MIMEText(email_body, 'plain'))
attachment = open(attachment_path, 'rb')
part = MIMEBase('application', 'octet-stream')
part.set_payload(attachment.read())
encoders.encode_base64(part)
part.add_header('Content-Disposition', f'attachment; filename={os.path.basename(attachment_path)}')
msg.attach(part)
attachment.close()
with smtplib.SMTP('smtp.gmail.com', 587) as server:
server.starttls()
print(sender_email)
print(sender_password)
server.login(sender_email, sender_password)
text = msg.as_string()
server.sendmail(sender_email, recipient_emails, text)
# ----------------------------------------------------------------------------------
# Function to clean text
def clean_text(text):
text = re.sub(r"[^\x00-\x7F]", " ", text)
text = re.sub(f"[\n]"," ", text)
return text
# Function to create text chunks
def segment_text(text, max_segment_length=700, batch_size=7):
sentences = sent_tokenize(text)
segments = []
current_segment = ""
for sentence in sentences:
if len(current_segment) + len(sentence) <= max_segment_length:
current_segment += sentence + " "
else:
segments.append(current_segment.strip())
current_segment = sentence + " "
if current_segment:
segments.append(current_segment.strip())
# Create batches
batches = [segments[i:i + batch_size] for i in range(0, len(segments), batch_size)]
return batches
# Function to extract keywords using combined techniques
def extract_keywords(text, extract_all):
try:
doc = nlp(text)
spacy_keywords = set([ent.text for ent in doc.ents])
spacy_entities = spacy_keywords
print(f"\n\nSpacy Entities: {spacy_entities} \n\n")
# Use Only Spacy Entities
if extract_all is False:
return list(spacy_entities)
# Use RAKE
rake = Rake()
rake.extract_keywords_from_text(text)
rake_keywords = set(rake.get_ranked_phrases())
print(f"\n\nRake Keywords: {rake_keywords} \n\n")
# Use spaCy for NER and POS tagging
spacy_keywords.update([token.text for token in doc if token.pos_ in ["NOUN", "PROPN", "VERB", "ADJ"]])
print(f"\n\nSpacy Keywords: {spacy_keywords} \n\n")
# Use TF-IDF
vectorizer = TfidfVectorizer(stop_words='english')
X = vectorizer.fit_transform([text])
tfidf_keywords = set(vectorizer.get_feature_names_out())
print(f"\n\nTFIDF Entities: {tfidf_keywords} \n\n")
# Combine all keywords
combined_keywords = rake_keywords.union(spacy_keywords).union(tfidf_keywords)
return list(combined_keywords)
except Exception as e:
raise QuestionGenerationError(f"Error in keyword extraction: {str(e)}")
def get_similar_words_sense2vec(word, n=3):
# Try to find the word with its most likely part-of-speech
word_with_pos = word + "|NOUN"
if word_with_pos in s2v:
similar_words = s2v.most_similar(word_with_pos, n=n)
return [word.split("|")[0] for word, _ in similar_words]
# If not found, try without POS
if word in s2v:
similar_words = s2v.most_similar(word, n=n)
return [word.split("|")[0] for word, _ in similar_words]
return []
def get_synonyms(word, n=3):
synonyms = []
for syn in wordnet.synsets(word):
for lemma in syn.lemmas():
if lemma.name() != word and lemma.name() not in synonyms:
synonyms.append(lemma.name())
if len(synonyms) == n:
return synonyms
return synonyms
def generate_options(answer, context, n=3):
options = [answer]
# Add contextually relevant words using a pre-trained model
context_embedding = context_model.encode(context)
answer_embedding = context_model.encode(answer)
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
# Compute similarity scores and sort context words
similarity_scores = [util.pytorch_cos_sim(context_model.encode(word), answer_embedding).item() for word in context_words]
sorted_context_words = [word for _, word in sorted(zip(similarity_scores, context_words), reverse=True)]
options.extend(sorted_context_words[:n])
# Try to get similar words based on sense2vec
similar_words = get_similar_words_sense2vec(answer, n)
options.extend(similar_words)
# If we don't have enough options, try synonyms
if len(options) < n + 1:
synonyms = get_synonyms(answer, n - len(options) + 1)
options.extend(synonyms)
# If we still don't have enough options, extract other entities from the context
if len(options) < n + 1:
doc = nlp(context)
entities = [ent.text for ent in doc.ents if ent.text.lower() != answer.lower()]
options.extend(entities[:n - len(options) + 1])
# If we still need more options, add some random words from the context
if len(options) < n + 1:
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
options.extend(random.sample(context_words, min(n - len(options) + 1, len(context_words))))
print(f"\n\nAll Possible Options: {options}\n\n")
# Ensure we have the correct number of unique options
options = list(dict.fromkeys(options))[:n+1]
# Shuffle the options
random.shuffle(options)
return options
# Function to map keywords to sentences with customizable context window size
def map_keywords_to_sentences(text, keywords, context_window_size):
sentences = sent_tokenize(text)
keyword_sentence_mapping = {}
print(f"\n\nSentences: {sentences}\n\n")
for keyword in keywords:
for i, sentence in enumerate(sentences):
if keyword in sentence:
# Combine current sentence with surrounding sentences for context
start = max(0, i - context_window_size)
end = min(len(sentences), i + context_window_size + 1)
context = ' '.join(sentences[start:end])
if keyword not in keyword_sentence_mapping:
keyword_sentence_mapping[keyword] = context
else:
keyword_sentence_mapping[keyword] += ' ' + context
return keyword_sentence_mapping
# Function to perform entity linking using Wikipedia API
@lru_cache(maxsize=128)
def entity_linking(keyword):
page = wiki_wiki.page(keyword)
if page.exists():
return page.fullurl
return None
async def generate_question_async(context, answer, num_beams):
try:
input_text = f"<context> {context} <answer> {answer}"
print(f"\n{input_text}\n")
input_ids = tokenizer.encode(input_text, return_tensors='pt')
outputs = await asyncio.to_thread(model.generate, input_ids, num_beams=num_beams, early_stopping=True, max_length=250)
question = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(f"\n{question}\n")
return question
except Exception as e:
raise QuestionGenerationError(f"Error in question generation: {str(e)}")
async def generate_options_async(answer, context, n=3):
try:
options = [answer]
# Add contextually relevant words using a pre-trained model
context_embedding = await asyncio.to_thread(context_model.encode, context)
answer_embedding = await asyncio.to_thread(context_model.encode, answer)
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
# Compute similarity scores and sort context words
similarity_scores = [util.pytorch_cos_sim(await asyncio.to_thread(context_model.encode, word), answer_embedding).item() for word in context_words]
sorted_context_words = [word for _, word in sorted(zip(similarity_scores, context_words), reverse=True)]
options.extend(sorted_context_words[:n])
# Try to get similar words based on sense2vec
similar_words = await asyncio.to_thread(get_similar_words_sense2vec, answer, n)
options.extend(similar_words)
# If we don't have enough options, try synonyms
if len(options) < n + 1:
synonyms = await asyncio.to_thread(get_synonyms, answer, n - len(options) + 1)
options.extend(synonyms)
# Ensure we have the correct number of unique options
options = list(dict.fromkeys(options))[:n+1]
# Shuffle the options
random.shuffle(options)
return options
except Exception as e:
raise QuestionGenerationError(f"Error in generating options: {str(e)}")
# Function to generate questions using beam search
async def generate_questions_async(text, num_questions, context_window_size, num_beams, extract_all_keywords):
try:
batches = segment_text(text)
keywords = extract_keywords(text, extract_all_keywords)
all_questions = []
progress_bar = st.progress(0)
status_text = st.empty()
for i, batch in enumerate(batches):
status_text.text(f"Processing batch {i+1} of {len(batches)}...")
batch_questions = await process_batch(batch, keywords, context_window_size, num_beams)
all_questions.extend(batch_questions)
progress_bar.progress((i + 1) / len(batches))
if len(all_questions) >= num_questions:
break
progress_bar.empty()
status_text.empty()
return all_questions[:num_questions]
except QuestionGenerationError as e:
st.error(f"An error occurred during question generation: {str(e)}")
return []
except Exception as e:
st.error(f"An unexpected error occurred: {str(e)}")
return []
async def process_batch(batch, keywords, context_window_size, num_beams):
questions = []
for text in batch:
keyword_sentence_mapping = map_keywords_to_sentences(text, keywords, context_window_size)
for keyword, context in keyword_sentence_mapping.items():
question = await generate_question_async(context, keyword, num_beams)
options = await generate_options_async(keyword, context)
overall_score, relevance_score, complexity_score, spelling_correctness = assess_question_quality(context, question, keyword)
if overall_score >= 0.5:
questions.append({
"question": question,
"context": context,
"answer": keyword,
"options": options,
"overall_score": overall_score,
"relevance_score": relevance_score,
"complexity_score": complexity_score,
"spelling_correctness": spelling_correctness,
})
return questions
# Function to export questions to CSV
def export_to_csv(data):
# df = pd.DataFrame(data, columns=["Context", "Answer", "Question", "Options"])
df = pd.DataFrame(data)
# csv = df.to_csv(index=False,encoding='utf-8')
csv = df.to_csv(index=False)
return csv
# Function to export questions to PDF
def export_to_pdf(data):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
for item in data:
pdf.multi_cell(0, 10, f"Context: {item['context']}")
pdf.multi_cell(0, 10, f"Question: {item['question']}")
pdf.multi_cell(0, 10, f"Answer: {item['answer']}")
pdf.multi_cell(0, 10, f"Options: {', '.join(item['options'])}")
pdf.multi_cell(0, 10, f"Overall Score: {item['overall_score']:.2f}")
pdf.ln(10)
return pdf.output(dest='S').encode('latin-1')
def display_word_cloud(generated_questions):
word_frequency = {}
for question in generated_questions:
words = question.split()
for word in words:
word_frequency[word] = word_frequency.get(word, 0) + 1
wordcloud = WordCloud(width=800, height=400, background_color='white').generate_from_frequencies(word_frequency)
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
st.pyplot()
def assess_question_quality(context, question, answer):
# Assess relevance using cosine similarity
context_doc = nlp(context)
question_doc = nlp(question)
relevance_score = context_doc.similarity(question_doc)
# Assess complexity using token length (as a simple metric)
complexity_score = min(len(question_doc) / 20, 1) # Normalize to 0-1
# Assess Spelling correctness
misspelled = spell.unknown(question.split())
spelling_correctness = 1 - (len(misspelled) / len(question.split())) # Normalize to 0-1
# Calculate overall score (you can adjust weights as needed)
overall_score = (
0.4 * relevance_score +
0.4 * complexity_score +
0.2 * spelling_correctness
)
return overall_score, relevance_score, complexity_score, spelling_correctness
def main():
# Streamlit interface
st.title(":blue[Question Generator System]")
session_id = get_session_id()
state = initialize_state(session_id)
with st.sidebar:
show_info = st.toggle('Show Info',False)
if show_info:
display_info()
st.subheader("Customization Options")
# Customization options
input_type = st.radio("Select Input Preference", ("Text Input","Upload PDF"))
with st.expander("Choose the Additional Elements to show"):
show_context = st.checkbox("Context",True)
show_answer = st.checkbox("Answer",True)
show_options = st.checkbox("Options",False)
show_entity_link = st.checkbox("Entity Link For Wikipedia",True)
show_qa_scores = st.checkbox("QA Score",False)
num_beams = st.slider("Select number of beams for question generation", min_value=2, max_value=10, value=2)
context_window_size = st.slider("Select context window size (number of sentences before and after)", min_value=1, max_value=5, value=1)
num_questions = st.slider("Select number of questions to generate", min_value=1, max_value=1000, value=5)
col1, col2 = st.columns(2)
with col1:
extract_all_keywords = st.toggle("Extract Max Keywords",value=False)
with col2:
enable_feedback_mode = st.toggle("Enable Feedback Mode",False)
text = None
if input_type == "Text Input":
text = st.text_area("Enter text here:", value="Joe Biden, the current US president is on a weak wicket going in for his reelection later this November against former President Donald Trump.", help="Enter or paste your text here")
elif input_type == "Upload PDF":
file = st.file_uploader("Upload PDF Files")
if file is not None:
try:
text = extract_all_text_from_pdf(file)
# text = get_pdf_text(file)
except Exception as e:
st.error(f"Error reading PDF file: {str(e)}")
text = None
if text:
text = clean_text(text)
generate_questions_button = st.button("Generate Questions")
st.markdown('<span aria-label="Generate questions button">Above is the generate questions button</span>', unsafe_allow_html=True)
# if generate_questions_button:
if generate_questions_button and text:
start_time = time.time()
with st.spinner("Generating questions..."):
try:
state['generated_questions'] = asyncio.run(generate_questions_async(text, num_questions, context_window_size, num_beams, extract_all_keywords))
if not state['generated_questions']:
st.warning("No questions were generated. The text might be too short or lack suitable content.")
else:
st.success(f"Successfully generated {len(state['generated_questions'])} questions!")
except QuestionGenerationError as e:
st.error(f"An error occurred during question generation: {str(e)}")
except Exception as e:
st.error(f"An unexpected error occurred: {str(e)}")
print("\n\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n\n")
data = get_state(session_id)
print(data)
end_time = time.time()
print(f"Time Taken to generate: {end_time-start_time}")
set_state(session_id, 'generated_questions', state['generated_questions'])
# sort question based on their quality score
state['generated_questions'] = sorted(state['generated_questions'],key = lambda x: x['overall_score'], reverse=True)
# Display generated questions
if state['generated_questions']:
st.header("Generated Questions:",divider='blue')
for i, q in enumerate(state['generated_questions']):
st.subheader(body=f":orange[Q{i+1}:] {q['question']}")
if show_context is True:
st.write(f"**Context:** {q['context']}")
if show_answer is True:
st.write(f"**Answer:** {q['answer']}")
if show_options is True:
st.write(f"**Options:**")
for j, option in enumerate(q['options']):
st.write(f"{chr(65+j)}. {option}")
if show_entity_link is True:
linked_entity = entity_linking(q['answer'])
if linked_entity:
st.write(f"**Entity Link:** {linked_entity}")
if show_qa_scores is True:
m1,m2,m3,m4 = st.columns([1.7,1,1,1])
m1.metric("Overall Quality Score", value=f"{q['overall_score']:,.2f}")
m2.metric("Relevance Score", value=f"{q['relevance_score']:,.2f}")
m3.metric("Complexity Score", value=f"{q['complexity_score']:,.2f}")
m4.metric("Spelling Correctness", value=f"{q['spelling_correctness']:,.2f}")
# q['context'] = st.text_area(f"Edit Context {i+1}:", value=q['context'], key=f"context_{i}")
if enable_feedback_mode:
q['question'] = st.text_input(f"Edit Question {i+1}:", value=q['question'], key=f"question_{i}")
q['rating'] = st.select_slider(f"Rate this question (1-5)", options=[1, 2, 3, 4, 5], key=f"rating_{i}")
if st.button(f"Submit Feedback for Question {i+1}", key=f"submit_{i}"):
feedback_file=save_feedback(q['question'], q['answer'], q['rating'], q['options'], q['context'])
st.success(f"Feedback submitted for Question {i+1}")
pswd = st.secrets['EMAIL_PASSWORD']
send_email_with_attachment(
email_subject='feedback from QGen',
email_body='Please find the attached feedback JSON file.',
recipient_emails=['[email protected]', '[email protected]'],
sender_email='[email protected]',
sender_password=pswd,
attachment_path=feedback_file)
st.write("Feedback sent to admin")
st.write("---")
# Export buttons
# if st.session_state.generated_questions:
if state['generated_questions']:
with st.sidebar:
csv_data = export_to_csv(state['generated_questions'])
st.download_button(label="Download CSV", data=csv_data, file_name='questions.csv', mime='text/csv')
pdf_data = export_to_pdf(state['generated_questions'])
st.download_button(label="Download PDF", data=pdf_data, file_name='questions.pdf', mime='application/pdf')
with st.expander("View Visualizations"):
questions = [tpl['question'] for tpl in state['generated_questions']]
overall_scores = [tpl['overall_score'] for tpl in state['generated_questions']]
st.subheader('WordCloud of Questions',divider='rainbow')
display_word_cloud(questions)
st.subheader('Overall Scores',divider='violet')
overall_scores = pd.DataFrame(overall_scores,columns=['Overall Scores'])
st.line_chart(overall_scores)
# View Feedback Statistics
with st.expander("View Feedback Statistics"):
feedback_file = 'question_feedback.json'
if os.path.exists(feedback_file):
with open(feedback_file, 'r') as f:
feedback_data = json.load(f)
st.subheader("Feedback Statistics")
# Calculate average rating
ratings = [feedback['rating'] for feedback in feedback_data]
avg_rating = sum(ratings) / len(ratings) if ratings else 0
st.write(f"Average Question Rating: {avg_rating:.2f}")
# Show distribution of ratings
rating_counts = {i: ratings.count(i) for i in range(1, 6)}
st.bar_chart(rating_counts)
# Show some highly rated questions
st.subheader("Highly Rated Questions")
sorted_feedback = sorted(feedback_data, key=lambda x: x['rating'], reverse=True)
top_questions = sorted_feedback[:5]
for feedback in top_questions:
st.write(f"Question: {feedback['question']}")
st.write(f"Answer: {feedback['answer']}")
st.write(f"Rating: {feedback['rating']}")
st.write("---")
else:
st.write("No feedback data available yet.")
print("********************************************************************************")
if __name__ == '__main__':
try:
main()
except Exception as e:
st.error(f"An unexpected error occurred: {str(e)}")
st.error("Please try refreshing the page. If the problem persists, contact support.")