Spaces:
Sleeping
Sleeping
import streamlit as st | |
import cv2 | |
import numpy as np | |
from PIL import Image, ImageDraw | |
# import imutils | |
# import easyocr | |
# import os | |
# import pathlib | |
# import platform | |
# from xyxy_converter import yolov5_to_image_coordinates | |
# import shutil | |
from models import get_odometer_xy, get_digit | |
# system_platform = platform.system() | |
# if system_platform == 'Windows': pathlib.PosixPath = pathlib.WindowsPath | |
# CUR_DIR = os.getcwd() | |
# YOLO_PATH = f"{CUR_DIR}/yolov5" | |
# MODEL_PATH = "runs/train/exp/weights/best.pt" | |
def main(): | |
st.title("Odometer value extractor with Streamlit") | |
# Use st.camera to capture images from the user's camera | |
img_file_buffer = st.camera_input(label='Please, take a photo of odometer', key="odometer") | |
# Check if an image is captured | |
if img_file_buffer is not None: | |
# Convert the image to a NumPy array | |
image = Image.open(img_file_buffer) | |
image_np = np.array(image) | |
resized_image = cv2.resize(image_np, (640, 640)) | |
resized_image = resized_image.astype(np.uint8) | |
cv2.imwrite('odometer_image.jpg', resized_image) | |
# original_img = cv2.imread('odometer_image.jpg') | |
gray = cv2.cvtColor(resized_image, cv2.COLOR_BGR2GRAY) | |
x1, y1, x2, y2, odo_confidence = get_odometer_xy( | |
model_path='odo_detector.tflite', | |
image_path='odometer_image.jpg' | |
) | |
st.write(odo_confidence) | |
if odo_confidence == 0: | |
display_text = "An odometer is not detected in the image!!!" | |
st.image('odometer_image.jpg', caption=f"{display_text}", use_column_width=True) | |
else: | |
cropped_image = gray[y1:y2, x1:x2] | |
# cropped_image = resized_image[y1:y2, x1:x2] | |
cropped_image = cv2.resize(cropped_image, (640, 640)) | |
cv2.imwrite('odometer_number_image.jpg', cropped_image) | |
extracted_digit = get_digit( | |
model_path="digit_yolov8_best_float16.tflite", | |
image_path='odometer_number_image.jpg', | |
threshold=0.4 | |
) | |
display_text = f'Here is the zoomed odometer value: {extracted_digit}.' | |
st.image('odometer_number_image.jpg', caption=f"{display_text}", use_column_width=True) | |
image = Image.open('odometer_image.jpg') | |
image_resized = image.resize((640, 640)) | |
draw = ImageDraw.Draw(image_resized) | |
draw.rectangle([x1, y1, x2, y2], outline="red", width=2) | |
class_name = 'odometer' | |
text = f"Class: {class_name}, Confidence: {odo_confidence:.2f}" | |
draw.text((x1, y1), text, fill="red") | |
# Saving Images | |
image_resized.save('odometer_highlighted_image.jpg') | |
display_text = 'Here is the odometer on the image.' | |
st.image('odometer_highlighted_image.jpg', caption=f"{display_text}", use_column_width=True) | |
# detect( | |
# weights='yolov5\runs\train\exp\weights\best.pt', | |
# source='odometer_image.jpg', | |
# img=640, | |
# conf=0.4, | |
# name='temp_exp', | |
# hide_labels=True, | |
# hide_conf=True, | |
# save_txt=True, | |
# exist_ok=True | |
# ) | |
# # os.system('wandb disabled') | |
# os.chdir(YOLO_PATH) | |
# # try: | |
# # shutil.rmtree('runs/detect/temp_exp') | |
# # except: | |
# # pass | |
# image_path = "../odometer_image.jpg" | |
# # command = f"python detect.py --weights {MODEL_PATH} --source {image_path} --img 640 --conf 0.4 --name 'temp_exp' --hide-labels --hide-conf --save-txt --exist-ok" | |
# command = f''' | |
# python detect.py \ | |
# --weights {MODEL_PATH} \ | |
# --source {image_path} \ | |
# --img 640 \ | |
# --conf 0.4 \ | |
# --name temp_exp \ | |
# --hide-labels \ | |
# --hide-conf \ | |
# --save-txt \ | |
# --exist-ok \ | |
# --save-conf | |
# ''' | |
# # Run the command | |
# os.system(command) | |
# # st.write('The detection is completed!!!') | |
# os.chdir(CUR_DIR) | |
# # st.write(os.path.exists('yolov5/runs/detect/temp_exp')) | |
# if os.path.exists('yolov5/runs/detect/temp_exp'): | |
# processed_image = cv2.imread('yolov5/runs/detect/temp_exp/odometer_image.jpg') | |
# # st.write('Image boxed and loaded') | |
# text_files = os.listdir('yolov5/runs/detect/temp_exp/labels') | |
# original_img = cv2.imread('odometer_image.jpg') | |
# gray = cv2.cvtColor(original_img, cv2.COLOR_BGR2GRAY) | |
# if len(text_files) == 0: | |
# display_text = "An odometer is not detected in the image!!!" | |
# else: | |
# text_file_path = f'yolov5/runs/detect/temp_exp/labels/{text_files[0]}' | |
# x1, y1, x2, y2 = yolov5_to_image_coordinates(text_file_path) | |
# # st.write(x1, y1, x2, y2) | |
# cropped_image = gray[x1:x2, y1:y2] | |
# reader = easyocr.Reader(['en']) | |
# result = reader.readtext(cropped_image) | |
# if len(result) != 0: | |
# odometer_value = sorted(result, key=lambda x: x[2], reverse=True)[0][1] | |
# display_text = f"Odometer value: {odometer_value}" | |
# else: | |
# odometer_value = 'not detected' | |
# display_text = f"The odometer value is {odometer_value}!!!" | |
# else: | |
# display_text = "An odometer is not detected in the image!!!" | |
# processed_image = cv2.imread('odometer_image.jpg') | |
# try: | |
# shutil.rmtree('odometer_image.jpg') | |
# shutil.rmtree('runs/detect/temp_exp') | |
# except: | |
# pass | |
# # Resize or preprocess the image as needed for your model | |
# # For example, resizing to a specific input size | |
# # processed_image = cv2.resize(image_np, (224, 224)) | |
# # Process the image using your deep learning model | |
# # processed_image = process_image(image_np) | |
# # Display the processed image | |
# st.image(processed_image, caption=f"{display_text}", use_column_width=True) | |
st.session_state.pop("odometer") | |
if __name__ == "__main__": | |
main() |