|
import ast |
|
import os |
|
from pathlib import Path |
|
|
|
import tiktoken |
|
from langchain.llms import OpenAI |
|
from langchain.prompts import PromptTemplate |
|
|
|
|
|
def find_files(directory): |
|
files_list = [] |
|
for root, dirs, files in os.walk(directory): |
|
for file in files: |
|
if file.endswith('.py'): |
|
files_list.append(os.path.join(root, file)) |
|
return files_list |
|
|
|
|
|
def extract_functions(file_path): |
|
with open(file_path, 'r') as file: |
|
source_code = file.read() |
|
functions = {} |
|
tree = ast.parse(source_code) |
|
for node in ast.walk(tree): |
|
if isinstance(node, ast.FunctionDef): |
|
func_name = node.name |
|
func_def = ast.get_source_segment(source_code, node) |
|
functions[func_name] = func_def |
|
return functions |
|
|
|
|
|
def extract_classes(file_path): |
|
with open(file_path, 'r') as file: |
|
source_code = file.read() |
|
classes = {} |
|
tree = ast.parse(source_code) |
|
for node in ast.walk(tree): |
|
if isinstance(node, ast.ClassDef): |
|
class_name = node.name |
|
function_names = [] |
|
for subnode in ast.walk(node): |
|
if isinstance(subnode, ast.FunctionDef): |
|
function_names.append(subnode.name) |
|
classes[class_name] = ", ".join(function_names) |
|
return classes |
|
|
|
|
|
def extract_functions_and_classes(directory): |
|
files = find_files(directory) |
|
functions_dict = {} |
|
classes_dict = {} |
|
for file in files: |
|
functions = extract_functions(file) |
|
if functions: |
|
functions_dict[file] = functions |
|
classes = extract_classes(file) |
|
if classes: |
|
classes_dict[file] = classes |
|
return functions_dict, classes_dict |
|
|
|
|
|
def parse_functions(functions_dict, formats, dir): |
|
c1 = len(functions_dict) |
|
for i, (source, functions) in enumerate(functions_dict.items(), start=1): |
|
print(f"Processing file {i}/{c1}") |
|
source_w = source.replace(dir + "/", "").replace("." + formats, ".md") |
|
subfolders = "/".join(source_w.split("/")[:-1]) |
|
Path(f"outputs/{subfolders}").mkdir(parents=True, exist_ok=True) |
|
for j, (name, function) in enumerate(functions.items(), start=1): |
|
print(f"Processing function {j}/{len(functions)}") |
|
prompt = PromptTemplate( |
|
input_variables=["code"], |
|
template="Code: \n{code}, \nDocumentation: ", |
|
) |
|
llm = OpenAI(temperature=0) |
|
response = llm(prompt.format(code=function)) |
|
mode = "a" if Path(f"outputs/{source_w}").exists() else "w" |
|
with open(f"outputs/{source_w}", mode) as f: |
|
f.write( |
|
f"\n\n# Function name: {name} \n\nFunction: \n```\n{function}\n```, \nDocumentation: \n{response}") |
|
|
|
|
|
def parse_classes(classes_dict, formats, dir): |
|
c1 = len(classes_dict) |
|
for i, (source, classes) in enumerate(classes_dict.items()): |
|
print(f"Processing file {i + 1}/{c1}") |
|
source_w = source.replace(dir + "/", "").replace("." + formats, ".md") |
|
subfolders = "/".join(source_w.split("/")[:-1]) |
|
Path(f"outputs/{subfolders}").mkdir(parents=True, exist_ok=True) |
|
for name, function_names in classes.items(): |
|
print(f"Processing Class {i + 1}/{c1}") |
|
prompt = PromptTemplate( |
|
input_variables=["class_name", "functions_names"], |
|
template="Class name: {class_name} \nFunctions: {functions_names}, \nDocumentation: ", |
|
) |
|
llm = OpenAI(temperature=0) |
|
response = llm(prompt.format(class_name=name, functions_names=function_names)) |
|
|
|
with open(f"outputs/{source_w}", "a" if Path(f"outputs/{source_w}").exists() else "w") as f: |
|
f.write(f"\n\n# Class name: {name} \n\nFunctions: \n{function_names}, \nDocumentation: \n{response}") |
|
|
|
|
|
def transform_to_docs(functions_dict, classes_dict, formats, dir): |
|
docs_content = ''.join([str(key) + str(value) for key, value in functions_dict.items()]) |
|
docs_content += ''.join([str(key) + str(value) for key, value in classes_dict.items()]) |
|
|
|
num_tokens = len(tiktoken.get_encoding("cl100k_base").encode(docs_content)) |
|
total_price = ((num_tokens / 1000) * 0.02) |
|
|
|
print(f"Number of Tokens = {num_tokens:,d}") |
|
print(f"Approx Cost = ${total_price:,.2f}") |
|
|
|
user_input = input("Price Okay? (Y/N)\n").lower() |
|
if user_input == "y" or user_input == "": |
|
if not Path("outputs").exists(): |
|
Path("outputs").mkdir() |
|
parse_functions(functions_dict, formats, dir) |
|
parse_classes(classes_dict, formats, dir) |
|
print("All done!") |
|
else: |
|
print("The API was not called. No money was spent.") |
|
|