File size: 12,754 Bytes
dddb9f9 d967830 dddb9f9 8c4ff63 dddb9f9 8c4ff63 7fb1c65 dddb9f9 d967830 dddb9f9 d967830 dddb9f9 d967830 dddb9f9 e593cad d967830 e593cad faad4ba dddb9f9 d967830 dddb9f9 d967830 dddb9f9 d967830 6ded705 dddb9f9 faad4ba dddb9f9 faad4ba dddb9f9 6ded705 dddb9f9 faad4ba 7fb1c65 dddb9f9 00a5975 dddb9f9 d967830 dddb9f9 faad4ba d967830 36dbf7a d967830 7fb1c65 d967830 36dbf7a d967830 8c4ff63 d967830 8c4ff63 36dbf7a 35f2fe5 37989dd 36dbf7a 37989dd 36dbf7a 37989dd 36dbf7a 35f2fe5 36dbf7a dddb9f9 35379ab dddb9f9 e593cad dddb9f9 35379ab dddb9f9 35379ab dddb9f9 e593cad dddb9f9 35379ab dddb9f9 35379ab dddb9f9 36dbf7a 8c4ff63 36dbf7a d967830 dddb9f9 37989dd dddb9f9 35379ab dddb9f9 d967830 abede12 d967830 8c4ff63 d967830 e593cad d967830 dddb9f9 d967830 36dbf7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
import warnings
warnings.filterwarnings("ignore")
import os
import numpy as np
import pandas as pd
from typing import Iterable
import gradio as gr
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
import requests
import torch
import librosa
import torch.nn.functional as F
# Import the necessary functions from the voj package
from audio_class_predictor import predict_class
from bird_ast_model import birdast_preprocess, birdast_inference
from bird_ast_seq_model import birdast_seq_preprocess, birdast_seq_inference
from utils import plot_wave, plot_mel, download_model, bandpass_filter
# Define the default parameters
ASSET_DIR = "./assets"
DEFUALT_SR = 16_000
DEFUALT_HIGH_CUT = 8_000
DEFUALT_LOW_CUT = 1_000
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Use Device: {DEVICE}")
if not os.path.exists(ASSET_DIR):
os.makedirs(ASSET_DIR)
# define the assets for the models
birdast_assets = {
"model_weights": [
f"https://huggingface.co/shiyi-li/BirdAST/resolve/main/BirdAST_Baseline_GroupKFold_fold_{i}.pth"
for i in range(5)
],
"label_mapping": "https://huggingface.co/shiyi-li/BirdAST/resolve/main/BirdAST_Baseline_GroupKFold_label_map.csv",
"preprocess_fn": birdast_preprocess,
"inference_fn": birdast_inference,
}
birdast_seq_assets = {
"model_weights": [
f"https://huggingface.co/shiyi-li/BirdAST_Seq/resolve/main/BirdAST_SeqPool_GroupKFold_fold_{i}.pth"
for i in range(5)
],
"label_mapping": "https://huggingface.co/shiyi-li/BirdAST_Seq/resolve/main/BirdAST_SeqPool_GroupKFold_label_map.csv",
"preprocess_fn": birdast_seq_preprocess,
"inference_fn": birdast_seq_inference,
}
# maintain a dictionary of assets
ASSET_DICT = {
"BirdAST": birdast_assets,
"BirdAST_Seq": birdast_seq_assets,
}
def run_inference_with_model(audio_clip, sr, model_name):
# download the model assets
assets = ASSET_DICT[model_name]
model_weights_url = assets["model_weights"]
label_map_url = assets["label_mapping"]
preprocess_fn = assets["preprocess_fn"]
inference_fn = assets["inference_fn"]
# download the model weights
model_weights = []
for model_weight in model_weights_url:
weight_file = os.path.join(ASSET_DIR, model_weight.split("/")[-1])
if not os.path.exists(weight_file):
download_model(model_weight, weight_file)
model_weights.append(weight_file)
# download the label mapping
label_map_csv = os.path.join(ASSET_DIR, label_map_url.split("/")[-1])
if not os.path.exists(label_map_csv):
download_model(label_map_url, label_map_csv)
# load the label mapping
label_mapping = pd.read_csv(label_map_csv)
species_id_to_name = {row["species_id"]: row["scientific_name"] for _, row in label_mapping.iterrows()}
# preprocess the audio clip
spectrogram = preprocess_fn(audio_clip, sr=sr)
# run inference
predictions = inference_fn(model_weights, spectrogram, device=DEVICE)
# aggregate the results
final_predicts = predictions.mean(axis=0)
topk_values, topk_indices = torch.topk(torch.from_numpy(final_predicts), 10)
results = []
for idx, scores in zip(topk_indices, topk_values):
species_name = species_id_to_name[idx.item()]
probability = scores.item() * 100
results.append([species_name, probability])
return results
def load_markdown_from_url(url):
response = requests.get(url)
response.raise_for_status()
return response.text
markdown_url = 'https://github.com/AmroAbdrabo/amroa/raw/main/img/desc.md'
markdown_content = load_markdown_from_url(markdown_url)
def predict(audio, start, end, model_name="BirdAST_Seq"):
raw_sr, audio_array = audio
if audio_array.ndim > 1:
audio_array = audio_array.mean(axis=1) # convert to mono
print(f"Audio shape raw: {audio_array.shape}, sr: {raw_sr}")
# sainty checks
len_audio = audio_array.shape[0] / raw_sr
if start >= end:
raise gr.Error(f"`start` ({start}) must be smaller than end ({end}s)")
if audio_array.shape[0] < start * raw_sr:
raise gr.Error(f"`start` ({start}) must be smaller than audio duration ({len_audio:.0f}s)")
if audio_array.shape[0] < end * raw_sr:
end = audio_array.shape[0] / (1.0*raw_sr)
audio_array = np.array(audio_array, dtype=np.float32) / 32768.0
audio_array = audio_array[int(start*raw_sr) : int(end*raw_sr)]
if raw_sr != DEFUALT_SR:
# run bandpass filter & resample
audio_array = bandpass_filter(audio_array, DEFUALT_LOW_CUT, DEFUALT_HIGH_CUT, raw_sr)
audio_array = librosa.resample(audio_array, orig_sr=raw_sr, target_sr=DEFUALT_SR)
print(f"Resampled Audio shape: {audio_array.shape}")
audio_array = audio_array.astype(np.float32)
# predict audio class
audio_class = predict_class(audio_array)
fig_spectrogram = plot_mel(DEFUALT_SR, audio_array)
fig_waveform = plot_wave(DEFUALT_SR, audio_array)
# run inference with model
print(f"Running inference with model: {model_name}")
species_class = run_inference_with_model(audio_array, DEFUALT_SR, model_name)
return audio_class, species_class, fig_waveform, fig_spectrogram
DESCRIPTION = markdown_content
css = """
#gradio-animation {
font-size: 2em;
font-weight: bold;
text-align: center;
margin-bottom: 20px;
}
.logo-container img {
width: 14%; /* Adjust width as necessary */
display: block;
margin: auto;
}
.number-input {
height: 100%;
padding-bottom: 60px; /* Adust the value as needed for more or less space */
}
.full-height {
height: 100%;
}
.column-container {
height: 100%;
}
"""
class Seafoam(Base):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.emerald,
secondary_hue: colors.Color | str = colors.blue,
neutral_hue: colors.Color | str = colors.gray,
spacing_size: sizes.Size | str = sizes.spacing_md,
radius_size: sizes.Size | str = sizes.radius_md,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font
| str
| Iterable[fonts.Font | str] = (
fonts.GoogleFont("Quicksand"),
"ui-sans-serif",
"sans-serif",
),
font_mono: fonts.Font
| str
| Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"),
"ui-monospace",
"monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
text_size=text_size,
font=font,
font_mono=font_mono,
)
seafoam = Seafoam()
js = """
function createGradioAnimation() {
var container = document.getElementById('gradio-animation');
var text = 'Voice of Jungle';
for (var i = 0; i < text.length; i++) {
(function(i){
setTimeout(function(){
var letter = document.createElement('span');
letter.style.opacity = '0';
letter.style.transition = 'opacity 0.5s';
letter.innerText = text[i];
container.appendChild(letter);
setTimeout(function() {
letter.style.opacity = '1';
}, 50);
}, i * 250);
})(i);
}
}
"""
REFERENCES = """
# Appendix
We have applied the AudioMAE model to pre-classify the 23000+ unlabelled audio clips collected from the Greater Manaus region in the Amazon rainforest. The results of the audio type classification can be found in the following [link](https://drive.google.com/file/d/1uOT88LDnBD-Z3YcFz1e9XjvW2ugCo6EI/view?usp=drive_link). We hope that the pre-classification results can help researchers better exploring the vast collection of audio recordings and facilitate the study of biodiversity in the Amazon rainforest.
# References
[1] Torkington, S. (2023, February 7). 50% of the global economy is under threat from biodiversity loss. World Economic Forum. Retrieved from https://www.weforum.org/agenda/2023/02/biodiversity-nature-loss-cop15/.
[2] Huang, P.-Y., Xu, H., Li, J., Baevski, A., Auli, M., Galuba, W., Metze, F., & Feichtenhofer, C. (2022). Masked Autoencoders that Listen. In NeurIPS.
[3] https://www.kaggle.com/code/dima806/bird-species-by-sound-detection
# Acknowledgements
We would like to thank all organizers, mentors and participants of the AI+Environment EcoHackathon 2024 event for their unwavering support and collaboration. We extend our gratitude to ETH BiodivX, GainForest and ETH AI Center for providing data, facilities and resources that enabled us to analyse the rich data in different ways. Our special thanks to David Dao, Sarah Tariq, Alessandro Amodio for always being there to help us! πππ
"""
# Function to handle model selection
def handle_model_selection(model_name, download_status):
# Inform user that download is starting
# gr.Info(f"Downloading model weights for {model_name}...")
print(f"Downloading model weights for {model_name}...")
if model_name is None:
model_name = "BirdAST"
assets = ASSET_DICT[model_name]
model_weights_url = assets["model_weights"]
download_flag = True
try:
total_files = len(model_weights_url)
for idx, model_weight in enumerate(model_weights_url):
weight_file = os.path.join(ASSET_DIR, model_weight.split("/")[-1])
print(weight_file)
if not os.path.exists(weight_file):
download_status = f"Downloading {idx + 1} of {total_files}"
download_model(model_weight, weight_file)
if not os.path.exists(weight_file):
download_flag = False
break
if download_flag:
download_status = f"Model <{model_name}> is ready! πππ\nUsing Device: {DEVICE.upper()}"
else:
download_status = f"An error occurred while downloading model weights."
except Exception as e:
download_status = f"An error occurred while downloading model weights."
return download_status
with gr.Blocks(theme = seafoam, css = css, js = js) as demo:
gr.Markdown('<div class="logo-container"><img src="https://i.ibb.co/vcG9kr0/vojlogo.jpg" width="50px" alt="vojlogo"></div>')
gr.Markdown('<div id="gradio-animation"></div>')
gr.Markdown(DESCRIPTION)
# add dropdown for model selection
model_names = ['BirdAST', 'BirdAST_Seq'] #, 'EfficientNet']
model_dropdown = gr.Dropdown(label="Choose a model", choices=model_names)
download_status = gr.Textbox(label="Model Status", lines=3, value='', interactive=False) # Non-interactive textbox for status
model_dropdown.change(handle_model_selection, inputs=[model_dropdown, download_status], outputs=download_status)
with gr.Row():
with gr.Column(elem_classes="column-container"):
start_time_input = gr.Number(label="Start Time", value=0, elem_classes="number-input full-height")
end_time_input = gr.Number(label="End Time", value=10, elem_classes="number-input full-height")
with gr.Column():
audio_input = gr.Audio(label="Input Audio", elem_classes="full-height")
with gr.Row():
raw_class_output = gr.Dataframe(headers=["Class", "Score [%]"], row_count=10, label="Class Prediction")
species_output = gr.Dataframe(headers=["Class", "Score [%]"], row_count=10, label="Species Prediction")
with gr.Row():
waveform_output = gr.Plot(label="Waveform")
spectrogram_output = gr.Plot(label="Spectrogram")
gr.Examples(
examples=[
["XC226833-Chestnut-belted_20Chat-Tyrant_20A_2010989.mp3", 0, 10],
["XC812290-Many-striped-Canastero_Teaben_Pe_1jul2022_FSchmitt_1.mp3", 0, 10],
["XC763511-Synallaxis-maronica_Bagua-grande_MixPre-1746.mp3", 0, 10]
],
inputs=[audio_input, start_time_input, end_time_input]
)
gr.Button("Predict").click(predict, [audio_input, start_time_input, end_time_input, model_dropdown], [raw_class_output, species_output, waveform_output, spectrogram_output])
gr.Markdown(REFERENCES)
demo.launch(share = True)
## logo: <img src="https://i.ibb.co/vcG9kr0/vojlogo.jpg" alt="vojlogo" border="0">
## cactus: <img src="https://i.ibb.co/3sW2mJN/spur.jpg" alt="spur" border="0"> |