Jobfinder / app.py
PluginLiveInterns
Add application file
c85d1d3
import streamlit as st
import http.client
import json
import os
import PyPDF2
import io
from google import genai
import requests
from dotenv import load_dotenv
import time
# Load environment variables from .env file
load_dotenv()
# Configure page
st.set_page_config(page_title="AI Job Finder", page_icon="πŸ’Ό", layout="wide")
# Styling
st.markdown("""
<style>
.main-header {
font-size: 2.5rem;
color: #4169E1;
}
.sub-header {
font-size: 1.5rem;
color: #6C757D;
}
.success-message {
background-color: #D4EDDA;
color: #155724;
padding: 10px;
border-radius: 5px;
margin-bottom: 20px;
}
.info-box {
background-color: #E7F3FE;
border-left: 6px solid #2196F3;
padding: 10px;
margin-bottom: 15px;
}
.search-options {
margin-top: 20px;
margin-bottom: 20px;
}
</style>
""", unsafe_allow_html=True)
# Header
st.markdown('<p class="main-header">AI-Powered Job Finder</p>', unsafe_allow_html=True)
st.markdown('<p class="sub-header">Upload your resume and find relevant jobs</p>', unsafe_allow_html=True)
# Initialize session state variables
if 'resume_text' not in st.session_state:
st.session_state.resume_text = ""
if 'resume_parsed' not in st.session_state:
st.session_state.resume_parsed = False
if 'parsed_data' not in st.session_state:
st.session_state.parsed_data = {}
if 'job_results' not in st.session_state:
st.session_state.job_results = []
if 'search_completed' not in st.session_state:
st.session_state.search_completed = False
if 'suggested_job_roles' not in st.session_state:
st.session_state.suggested_job_roles = []
if 'jobs_by_role' not in st.session_state:
st.session_state.jobs_by_role = {}
# Define the JSON schema for resume parsing
RESUME_SCHEMA = {
"schema": {
"basic_info": {
"name": "string",
"email": "string",
"phone": "string",
"location": "string"
},
"professional_summary": "string",
"skills": ["string"],
"technical_skills": ["string"],
"soft_skills": ["string"],
"experience": [{
"job_title": "string",
"company": "string",
"duration": "string",
"description": "string"
}],
"education": [{
"degree": "string",
"institution": "string",
"year": "string"
}],
"certifications": ["string"],
"years_of_experience": "number"
}
}
# Function to extract text from PDF
def extract_text_from_pdf(pdf_file):
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ""
for page_num in range(len(pdf_reader.pages)):
text += pdf_reader.pages[page_num].extract_text()
return text
# Function to parse resume with Gemini
def parse_resume_with_gemini(resume_text):
try:
# Configure the Gemini API
client = genai.Client(api_key=os.getenv('GEMINI_API_KEY'))
# Construct the prompt with schema
prompt = f"""
Parse the following resume text and extract information according to this exact JSON schema:
{json.dumps(RESUME_SCHEMA, indent=2)}
Resume text:
{resume_text}
Make sure to follow the schema exactly. If any information is not available, use empty strings or empty arrays as appropriate.
Return ONLY the JSON object with no additional text.
"""
# Get the model
# Generate the response
response = client.models.generate_content(model="gemini-2.0-flash", contents=prompt)
# Parse the response to get JSON
try:
parsed_data = json.loads(response.text)
return parsed_data
except json.JSONDecodeError:
# Try to extract JSON from the text if not directly parseable
import re
json_match = re.search(r'```json\n(.*?)\n```', response.text, re.DOTALL)
if json_match:
return json.loads(json_match.group(1))
else:
st.error("Could not parse the response as JSON")
return RESUME_SCHEMA["schema"]
except Exception as e:
st.error(f"Error parsing resume: {str(e)}")
return RESUME_SCHEMA["schema"]
# Function to search for jobs
def search_jobs(query, location="", page=1):
try:
conn = http.client.HTTPSConnection("jsearch.p.rapidapi.com")
# Format the query string
search_query = query.replace(" ", "%20")
if location:
search_query += f"%20in%20{location.replace(' ', '%20')}"
headers = {
'X-RapidAPI-Key': os.getenv('RAPIDAPI_KEY'),
'X-RapidAPI-Host': "jsearch.p.rapidapi.com"
}
conn.request("GET", f"/search?query={search_query}&page={page}&num_pages=1", headers=headers)
res = conn.getresponse()
data = res.read()
return json.loads(data.decode("utf-8"))
except Exception as e:
st.error(f"Error searching for jobs: {str(e)}")
return {"data": []}
if 'filter_remote_only' not in st.session_state:
st.session_state.filter_remote_only = False
if 'filter_employment_types' not in st.session_state:
st.session_state.filter_employment_types = []
if 'filter_date_posted' not in st.session_state:
st.session_state.filter_date_posted = 0
if 'min_salary' not in st.session_state:
st.session_state.min_salary = 0
if 'max_salary' not in st.session_state:
st.session_state.max_salary = 1000000
if 'filter_company_types' not in st.session_state:
st.session_state.filter_company_types = []
# Function to apply filters to job results
def apply_filters(jobs):
filtered_jobs = []
for job in jobs:
# Check remote filter
if st.session_state.filter_remote_only and not job.get('job_is_remote', False):
continue
# Check employment type filter
if st.session_state.filter_employment_types and job.get('job_employment_type') not in st.session_state.filter_employment_types:
continue
# Check date posted filter (in days)
if st.session_state.filter_date_posted > 0:
current_time = int(time.time())
posted_time = job.get('job_posted_at_timestamp', 0)
days_ago = (current_time - posted_time) / (60 * 60 * 24)
if days_ago > st.session_state.filter_date_posted:
continue
# Check salary filter
if job.get('job_min_salary') is not None and job.get('job_min_salary') < st.session_state.min_salary:
continue
if job.get('job_max_salary') is not None and job.get('job_max_salary') > st.session_state.max_salary:
continue
# Check company type filter
if st.session_state.filter_company_types and job.get('employer_company_type') not in st.session_state.filter_company_types:
continue
# All filters passed, add job to filtered results
filtered_jobs.append(job)
return filtered_jobs
# Function to generate job role suggestions based on skills using Gemini
def suggest_job_roles(skills):
try:
# Configure the Gemini API
client = genai.Client(api_key=os.getenv('GEMINI_API_KEY'))
# Construct the prompt for job role suggestions
prompt = f"""
Based on the following skills extracted from a resume, suggest 3-5 relevant job roles that this person could apply for.
Skills: {', '.join(skills)}
Return only a JSON array of strings with the job role titles. For example:
["Software Developer", "Data Engineer", "DevOps Engineer"]
Make the job roles specific and relevant to the skills provided.
"""
# Generate the response
response = client.models.generate_content(model="gemini-2.0-flash", contents=prompt)
# Parse the response to get job roles
try:
# Try to parse as direct JSON
job_roles = json.loads(response.text)
return job_roles
except json.JSONDecodeError:
# Try to extract JSON from text
import re
json_match = re.search(r'\[.*\]', response.text, re.DOTALL)
if json_match:
return json.loads(json_match.group(0))
else:
# Fallback
st.warning("Could not automatically generate job roles. Using default suggestions.")
return ["Software Developer", "Data Analyst", "Project Manager"]
except Exception as e:
st.error(f"Error suggesting job roles: {str(e)}")
return ["Software Developer", "Data Analyst", "Project Manager"]
# Function to search for jobs with multiple queries
def search_jobs_for_roles(job_roles, location="", page=1):
all_jobs = {}
for role in job_roles:
with st.spinner(f'Searching for {role} jobs...'):
result = search_jobs(role, location, page)
jobs = result.get('data', [])
all_jobs[role] = jobs
return all_jobs
# Resume Upload Section
st.subheader("Step 1: Upload Your Resume First")
uploaded_file = st.file_uploader("Upload your resume (PDF format)", type=['pdf'])
if uploaded_file is not None:
with st.spinner('Processing your resume...'):
# Extract text from the PDF
resume_text = extract_text_from_pdf(uploaded_file)
st.session_state.resume_text = resume_text
# Parse the resume
parsed_data = parse_resume_with_gemini(resume_text)
st.session_state.parsed_data = parsed_data
st.session_state.resume_parsed = True
# Extract all skills
tech_skills = parsed_data.get("technical_skills", [])
general_skills = parsed_data.get("skills", [])
soft_skills = parsed_data.get("soft_skills", [])
all_skills = list(set(tech_skills + general_skills + soft_skills))
# Generate job role suggestions
if all_skills:
st.session_state.suggested_job_roles = suggest_job_roles(all_skills)
if st.session_state.resume_parsed:
st.markdown("---")
st.subheader("Your Resume Information")
# Display the parsed information
with st.expander("Resume Parsed Information", expanded=True):
col1, col2 = st.columns(2)
with col1:
st.markdown("### Basic Information")
basic_info = parsed_data.get("basic_info", {})
st.write(f"**Name:** {basic_info.get('name', 'Not found')}")
st.write(f"**Email:** {basic_info.get('email', 'Not found')}")
st.write(f"**Phone:** {basic_info.get('phone', 'Not found')}")
st.write(f"**Location:** {basic_info.get('location', 'Not found')}")
st.markdown("### Experience")
for exp in parsed_data.get("experience", []):
st.markdown(f"**{exp.get('job_title', 'Role')} at {exp.get('company', 'Company')}**")
st.write(f"*{exp.get('duration', 'Duration not specified')}*")
st.write(exp.get('description', 'No description available'))
st.write("---")
with col2:
st.markdown("### Skills")
# Technical skills
st.write("**Technical Skills:**")
tech_skills = parsed_data.get("technical_skills", [])
if tech_skills:
st.write(", ".join(tech_skills))
else:
st.write("No technical skills found")
# Soft skills
st.write("**Soft Skills:**")
soft_skills = parsed_data.get("soft_skills", [])
if soft_skills:
st.write(", ".join(soft_skills))
else:
st.write("No soft skills found")
# General skills
st.write("**General Skills:**")
skills = parsed_data.get("skills", [])
if skills:
st.write(", ".join(skills))
else:
st.write("No general skills found")
st.markdown("### Education")
for edu in parsed_data.get("education", []):
st.write(f"**{edu.get('degree', 'Degree')}** - {edu.get('institution', 'Institution')}")
st.write(f"*{edu.get('year', 'Year not specified')}*")
st.write(f"**Years of Experience:** {parsed_data.get('years_of_experience', 'Not specified')}")
st.markdown("---")
st.subheader("Step 2: Job Search")
# Location input only (job roles are now automated)
location = st.text_input("Enter your preferred location (e.g., 'New York', 'Remote')")
# Display suggested job roles if available
if st.session_state.resume_parsed and st.session_state.suggested_job_roles:
st.markdown("### Suggested Job Roles Based on Your Skills")
# Add custom roles to session state if not already there
if 'custom_job_roles' not in st.session_state:
st.session_state.custom_job_roles = []
# Combine suggested and custom roles
all_job_roles = list(st.session_state.suggested_job_roles) + list(st.session_state.custom_job_roles)
# Create a row with text input and add button
col1, col2 = st.columns([3, 1])
with col1:
custom_role = st.text_input("Add your own job role", key="custom_role_input")
with col2:
if st.button("Add Role"):
if custom_role and custom_role not in all_job_roles:
st.session_state.custom_job_roles.append(custom_role)
st.success(f"Added: {custom_role}")
# Rerun to update the interface
st.rerun()
# Display job roles as selectable options (both suggested and custom)
selected_roles = st.multiselect(
"Select job roles to search for",
options=all_job_roles,
default=st.session_state.suggested_job_roles
)
# Display job roles as selectable options
# selected_roles = st.multiselect(
# "Select job roles to search for",
# options=st.session_state.suggested_job_roles,
# default=st.session_state.suggested_job_roles
# )
# Add filter options to sidebar
st.sidebar.markdown("### Filter Options")
# Remote work filter
st.sidebar.checkbox("Remote Only", key="filter_remote_only")
# Employment type filter
employment_types = ["FULLTIME", "PARTTIME", "CONTRACTOR", "INTERN"]
st.sidebar.multiselect(
"Employment Type",
employment_types,
default=None,
key="filter_employment_types"
)
# Date posted filter
date_options = {
"Any time": 0,
"Past 24 hours": 1,
"Past week": 7,
"Past month": 30
}
selected_date = st.sidebar.selectbox(
"Date Posted",
options=list(date_options.keys()),
index=0
)
st.session_state.filter_date_posted = date_options[selected_date]
# Salary range filter (only if salary data is available)
st.sidebar.markdown("### Salary Range")
col1, col2 = st.sidebar.columns(2)
with col1:
st.number_input("Min ($)", value=0, step=10000, key="min_salary")
with col2:
st.number_input("Max ($)", value=1000000, step=10000, key="max_salary")
# Company type filter
company_types = ["Public", "Private", "Nonprofit", "Government", "Startup", "Other"]
st.sidebar.multiselect(
"Company Type",
company_types,
default=None,
key="filter_company_types"
)
# Search button
if st.button("Search Jobs"):
if selected_roles:
with st.spinner('Searching for jobs across selected roles...'):
# Search for jobs for each selected role
jobs_by_role = search_jobs_for_roles(selected_roles, location)
# Store the results in session state
st.session_state.jobs_by_role = jobs_by_role
st.session_state.search_completed = True
else:
st.warning("Please select at least one job role")
else:
# If no resume uploaded or no job roles suggested
st.info("Upload your resume first to get AI-suggested job roles based on your skills")
# Manual job search fallback
search_query = st.text_input("Or enter your job search query manually (e.g., 'Python Developer')")
if st.button("Search Jobs"):
if search_query:
with st.spinner('Searching for jobs...'):
# Search for jobs
job_results = search_jobs(search_query, location)
# Store the results in session state
st.session_state.job_results = job_results.get('data', [])
st.session_state.jobs_by_role = {search_query: job_results.get('data', [])}
st.session_state.search_completed = True
else:
st.warning("Please enter a search query or upload your resume for job suggestions")
# Display Results
if st.session_state.search_completed:
st.markdown("---")
st.subheader("Job Search Results")
if st.session_state.jobs_by_role:
total_jobs_found = sum(len(jobs) for jobs in st.session_state.jobs_by_role.values())
st.success(f"Found a total of {total_jobs_found} jobs matching your criteria")
# Display jobs grouped by role
for role, jobs in st.session_state.jobs_by_role.items():
if jobs:
# Apply filters to this role's jobs
filtered_jobs = apply_filters(jobs)
if filtered_jobs:
with st.expander(f"πŸ“Œ {role} Jobs ({len(filtered_jobs)})", expanded=False):
st.markdown(f"### {role} Positions")
# Calculate skill match percentages if resume is uploaded
if st.session_state.resume_parsed:
# Extract all skills from resume
tech_skills = set(st.session_state.parsed_data.get("technical_skills", []))
general_skills = set(st.session_state.parsed_data.get("skills", []))
soft_skills = set(st.session_state.parsed_data.get("soft_skills", []))
all_skills = tech_skills.union(general_skills).union(soft_skills)
# Add match score to each job
for job in filtered_jobs:
if job.get('job_description'):
desc = job.get('job_description', '').lower()
matched_skills = [skill for skill in all_skills if skill.lower() in desc]
match_percentage = int((len(matched_skills) / max(1, len(all_skills))) * 100)
job['match_percentage'] = match_percentage
job['matched_skills'] = matched_skills
else:
job['match_percentage'] = 0
job['matched_skills'] = []
# Sort by match percentage
filtered_jobs = sorted(filtered_jobs, key=lambda x: x.get('match_percentage', 0), reverse=True)
# Display each job in this role category
for job_idx, job in enumerate(filtered_jobs):
# Customize job title based on match percentage if resume uploaded
if st.session_state.resume_parsed and 'match_percentage' in job:
job_title = f"{job_idx+1}. {job.get('job_title', 'Job Title Not Available')} - {job.get('employer_name', 'Company Not Available')} "
job_title += f"[Match: {job.get('match_percentage')}%]"
else:
job_title = f"{job_idx+1}. {job.get('job_title', 'Job Title Not Available')} - {job.get('employer_name', 'Company Not Available')}"
# Use a container instead of an expander to avoid nesting
job_container = st.container()
# Add a visual separator between jobs
st.markdown("---")
# Display job title with formatted styling
job_container.markdown(f"#### {job_title}")
# Create columns for job details
cols = job_container.columns([2, 1])
with cols[0]:
# Job details
st.write(f"**Company:** {job.get('employer_name', 'Not Available')}")
st.write(f"**Location:** {job.get('job_city', 'Not Available')}, {job.get('job_country', 'Not Available')}")
st.write(f"**Employment Type:** {job.get('job_employment_type', 'Not Available')}")
# Remote information
st.write(f"**Remote:** {'Yes' if job.get('job_is_remote') else 'No'}")
# Date posted and expiration
if job.get('job_posted_at_datetime_utc'):
st.write(f"**Posted:** {job.get('job_posted_at_datetime_utc', 'Not Available')}")
# Salary information
if job.get('job_min_salary') and job.get('job_max_salary'):
st.write(f"**Salary Range:** ${job.get('job_min_salary', 'Not Available')} - ${job.get('job_max_salary', 'Not Available')} {job.get('job_salary_currency', 'USD')}")
with cols[1]:
# Enhanced skills match section
if st.session_state.resume_parsed:
match_percentage = job.get('match_percentage', 0)
matched_skills = job.get('matched_skills', [])
# Create a visual progress bar for match percentage
st.markdown("### Skills Match")
# Color coding based on match percentage
if match_percentage > 70:
bar_color = "green"
elif match_percentage > 40:
bar_color = "orange"
else:
bar_color = "red"
# Display progress bar
st.progress(match_percentage / 100)
st.markdown(f"<h4 style='color:{bar_color};margin-top:0'>{match_percentage}% Match</h4>", unsafe_allow_html=True)
if matched_skills:
st.markdown("**Matching Skills:**")
skill_cols = st.columns(2)
for skill_idx, skill in enumerate(matched_skills[:10]):
col_idx = skill_idx % 2
with skill_cols[col_idx]:
st.markdown(f"βœ… {skill}")
if len(matched_skills) > 10:
st.markdown(f"*...and {len(matched_skills)-10} more*")
else:
st.write("⚠️ No direct skill matches found")
# Description
job_container.markdown("**Job Description:**")
full_desc = job.get('job_description', 'No description available')
if len(full_desc) > 1000:
job_container.markdown(full_desc[:1000] + "...")
if job_container.button(f"Show Full Description for Job {job_idx+1}", key=f"show_desc_{role}_{job_idx}"):
job_container.markdown(full_desc)
else:
job_container.markdown(full_desc)
# Display ALL application links
job_container.markdown("**Apply Links:**")
apply_options = job.get('apply_options', [])
if apply_options:
for option in apply_options:
job_container.markdown(f"[Apply on {option.get('publisher', 'Job Board')}]({option.get('apply_link')})")
elif job.get('job_apply_link'):
job_container.markdown(f"[Apply for this job]({job.get('job_apply_link')})")
else:
st.info(f"No {role} jobs match your filters. Try adjusting your filter criteria.")
else:
st.info(f"No {role} jobs found matching your search criteria.")
else:
st.info("No jobs found matching your search criteria. Try adjusting your search terms or location.")
st.markdown("---")
st.markdown("### How to use this app")
st.markdown("""
1. Upload your resume in PDF format to extract your skills and experience
2. Enter your job search query and preferred location
3. Review job listings and apply directly to positions you're interested in
""")
# Display app statistics
st.sidebar.markdown("### App Statistics")
if st.session_state.resume_parsed:
st.sidebar.success("βœ… Resume Parsed")
skill_count = len(st.session_state.parsed_data.get("skills", [])) + len(st.session_state.parsed_data.get("technical_skills", []))
st.sidebar.metric("Skills Detected", skill_count)
if st.session_state.suggested_job_roles:
st.sidebar.metric("Job Roles Suggested", len(st.session_state.suggested_job_roles))
else:
st.sidebar.warning("❌ No Resume Uploaded")
if st.session_state.search_completed:
st.sidebar.success("βœ… Job Search Completed")
total_jobs = sum(len(jobs) for jobs in st.session_state.jobs_by_role.values()) if st.session_state.jobs_by_role else len(st.session_state.job_results)
st.sidebar.metric("Jobs Found", total_jobs)
else:
st.sidebar.warning("❌ No Search Performed")