File size: 28,074 Bytes
c85d1d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
import streamlit as st
import http.client
import json
import os
import PyPDF2
import io
from google import genai
import requests
from dotenv import load_dotenv
import time

# Load environment variables from .env file
load_dotenv()

# Configure page
st.set_page_config(page_title="AI Job Finder", page_icon="πŸ’Ό", layout="wide")

# Styling
st.markdown("""
<style>
    .main-header {
        font-size: 2.5rem;
        color: #4169E1;
    }
    .sub-header {
        font-size: 1.5rem;
        color: #6C757D;
    }
    .success-message {
        background-color: #D4EDDA;
        color: #155724;
        padding: 10px;
        border-radius: 5px;
        margin-bottom: 20px;
    }
    .info-box {
        background-color: #E7F3FE;
        border-left: 6px solid #2196F3;
        padding: 10px;
        margin-bottom: 15px;
    }
    .search-options {
        margin-top: 20px;
        margin-bottom: 20px;
    }
</style>
""", unsafe_allow_html=True)

# Header
st.markdown('<p class="main-header">AI-Powered Job Finder</p>', unsafe_allow_html=True)
st.markdown('<p class="sub-header">Upload your resume and find relevant jobs</p>', unsafe_allow_html=True)

# Initialize session state variables
if 'resume_text' not in st.session_state:
    st.session_state.resume_text = ""
if 'resume_parsed' not in st.session_state:
    st.session_state.resume_parsed = False
if 'parsed_data' not in st.session_state:
    st.session_state.parsed_data = {}
if 'job_results' not in st.session_state:
    st.session_state.job_results = []
if 'search_completed' not in st.session_state:
    st.session_state.search_completed = False
if 'suggested_job_roles' not in st.session_state:
    st.session_state.suggested_job_roles = []
if 'jobs_by_role' not in st.session_state:
    st.session_state.jobs_by_role = {}

# Define the JSON schema for resume parsing
RESUME_SCHEMA = {
    "schema": {
        "basic_info": {
            "name": "string",
            "email": "string",
            "phone": "string",
            "location": "string"
        },
        "professional_summary": "string",
        "skills": ["string"],
        "technical_skills": ["string"],
        "soft_skills": ["string"],
        "experience": [{
            "job_title": "string",
            "company": "string",
            "duration": "string",
            "description": "string"
        }],
        "education": [{
            "degree": "string",
            "institution": "string",
            "year": "string"
        }],
        "certifications": ["string"],
        "years_of_experience": "number"
    }
}

# Function to extract text from PDF
def extract_text_from_pdf(pdf_file):
    pdf_reader = PyPDF2.PdfReader(pdf_file)
    text = ""
    for page_num in range(len(pdf_reader.pages)):
        text += pdf_reader.pages[page_num].extract_text()
    return text

# Function to parse resume with Gemini
def parse_resume_with_gemini(resume_text):
    try:
        # Configure the Gemini API
        client = genai.Client(api_key=os.getenv('GEMINI_API_KEY'))
        
        # Construct the prompt with schema
        prompt = f"""
        Parse the following resume text and extract information according to this exact JSON schema:
        
        {json.dumps(RESUME_SCHEMA, indent=2)}
        
        Resume text:
        {resume_text}
        
        Make sure to follow the schema exactly. If any information is not available, use empty strings or empty arrays as appropriate.
        Return ONLY the JSON object with no additional text.
        """
        
        # Get the model
        
        # Generate the response
        response = client.models.generate_content(model="gemini-2.0-flash", contents=prompt)

        
        # Parse the response to get JSON
        try:
            parsed_data = json.loads(response.text)
            return parsed_data
        except json.JSONDecodeError:
            # Try to extract JSON from the text if not directly parseable
            import re
            json_match = re.search(r'```json\n(.*?)\n```', response.text, re.DOTALL)
            if json_match:
                return json.loads(json_match.group(1))
            else:
                st.error("Could not parse the response as JSON")
                return RESUME_SCHEMA["schema"]
    except Exception as e:
        st.error(f"Error parsing resume: {str(e)}")
        return RESUME_SCHEMA["schema"]

# Function to search for jobs
def search_jobs(query, location="", page=1):
    try:
        conn = http.client.HTTPSConnection("jsearch.p.rapidapi.com")
        
        # Format the query string
        search_query = query.replace(" ", "%20")
        if location:
            search_query += f"%20in%20{location.replace(' ', '%20')}"
        
        headers = {
            'X-RapidAPI-Key': os.getenv('RAPIDAPI_KEY'),
            'X-RapidAPI-Host': "jsearch.p.rapidapi.com"
        }
        
        conn.request("GET", f"/search?query={search_query}&page={page}&num_pages=1", headers=headers)
        
        res = conn.getresponse()
        data = res.read()
        
        return json.loads(data.decode("utf-8"))
    except Exception as e:
        st.error(f"Error searching for jobs: {str(e)}")
        return {"data": []}

if 'filter_remote_only' not in st.session_state:
    st.session_state.filter_remote_only = False
if 'filter_employment_types' not in st.session_state:
    st.session_state.filter_employment_types = []
if 'filter_date_posted' not in st.session_state:
    st.session_state.filter_date_posted = 0
if 'min_salary' not in st.session_state:
    st.session_state.min_salary = 0
if 'max_salary' not in st.session_state:
    st.session_state.max_salary = 1000000
if 'filter_company_types' not in st.session_state:
    st.session_state.filter_company_types = []
    
# Function to apply filters to job results
def apply_filters(jobs):
    filtered_jobs = []
    
    for job in jobs:
        # Check remote filter
        if st.session_state.filter_remote_only and not job.get('job_is_remote', False):
            continue
            
        # Check employment type filter
        if st.session_state.filter_employment_types and job.get('job_employment_type') not in st.session_state.filter_employment_types:
            continue
            
        # Check date posted filter (in days)
        if st.session_state.filter_date_posted > 0:
            current_time = int(time.time())
            posted_time = job.get('job_posted_at_timestamp', 0)
            days_ago = (current_time - posted_time) / (60 * 60 * 24)
            if days_ago > st.session_state.filter_date_posted:
                continue
                
        # Check salary filter
        if job.get('job_min_salary') is not None and job.get('job_min_salary') < st.session_state.min_salary:
            continue
            
        if job.get('job_max_salary') is not None and job.get('job_max_salary') > st.session_state.max_salary:
            continue
            
        # Check company type filter
        if st.session_state.filter_company_types and job.get('employer_company_type') not in st.session_state.filter_company_types:
            continue
            
        # All filters passed, add job to filtered results
        filtered_jobs.append(job)
        
    return filtered_jobs

# Function to generate job role suggestions based on skills using Gemini
def suggest_job_roles(skills):
    try:
        # Configure the Gemini API
        client = genai.Client(api_key=os.getenv('GEMINI_API_KEY'))
        
        # Construct the prompt for job role suggestions
        prompt = f"""
        Based on the following skills extracted from a resume, suggest 3-5 relevant job roles that this person could apply for.
        Skills: {', '.join(skills)}
        
        Return only a JSON array of strings with the job role titles. For example:
        ["Software Developer", "Data Engineer", "DevOps Engineer"]
        
        Make the job roles specific and relevant to the skills provided.
        """
        
        # Generate the response
        response = client.models.generate_content(model="gemini-2.0-flash", contents=prompt)
        
        # Parse the response to get job roles
        try:
            # Try to parse as direct JSON
            job_roles = json.loads(response.text)
            return job_roles
        except json.JSONDecodeError:
            # Try to extract JSON from text
            import re
            json_match = re.search(r'\[.*\]', response.text, re.DOTALL)
            if json_match:
                return json.loads(json_match.group(0))
            else:
                # Fallback
                st.warning("Could not automatically generate job roles. Using default suggestions.")
                return ["Software Developer", "Data Analyst", "Project Manager"]
    
    except Exception as e:
        st.error(f"Error suggesting job roles: {str(e)}")
        return ["Software Developer", "Data Analyst", "Project Manager"]

# Function to search for jobs with multiple queries
def search_jobs_for_roles(job_roles, location="", page=1):
    all_jobs = {}
    
    for role in job_roles:
        with st.spinner(f'Searching for {role} jobs...'):
            result = search_jobs(role, location, page)
            jobs = result.get('data', [])
            all_jobs[role] = jobs
            
    return all_jobs

# Resume Upload Section
st.subheader("Step 1: Upload Your Resume First")
uploaded_file = st.file_uploader("Upload your resume (PDF format)", type=['pdf'])

if uploaded_file is not None:
    with st.spinner('Processing your resume...'):
        # Extract text from the PDF
        resume_text = extract_text_from_pdf(uploaded_file)
        st.session_state.resume_text = resume_text
        
        # Parse the resume
        parsed_data = parse_resume_with_gemini(resume_text)
        st.session_state.parsed_data = parsed_data
        st.session_state.resume_parsed = True
        
        # Extract all skills
        tech_skills = parsed_data.get("technical_skills", [])
        general_skills = parsed_data.get("skills", [])
        soft_skills = parsed_data.get("soft_skills", [])
        all_skills = list(set(tech_skills + general_skills + soft_skills))
        
        # Generate job role suggestions
        if all_skills:
            st.session_state.suggested_job_roles = suggest_job_roles(all_skills)
        
        if st.session_state.resume_parsed:
            st.markdown("---")
            st.subheader("Your Resume Information")
        # Display the parsed information
            with st.expander("Resume Parsed Information", expanded=True):
                col1, col2 = st.columns(2)
            
                with col1:
                    st.markdown("### Basic Information")
                    basic_info = parsed_data.get("basic_info", {})
                    st.write(f"**Name:** {basic_info.get('name', 'Not found')}")
                    st.write(f"**Email:** {basic_info.get('email', 'Not found')}")
                    st.write(f"**Phone:** {basic_info.get('phone', 'Not found')}")
                    st.write(f"**Location:** {basic_info.get('location', 'Not found')}")
                    
                    st.markdown("### Experience")
                    for exp in parsed_data.get("experience", []):
                        st.markdown(f"**{exp.get('job_title', 'Role')} at {exp.get('company', 'Company')}**")
                        st.write(f"*{exp.get('duration', 'Duration not specified')}*")
                        st.write(exp.get('description', 'No description available'))
                        st.write("---")
                
                with col2:
                    st.markdown("### Skills")
                    
                    # Technical skills
                    st.write("**Technical Skills:**")
                    tech_skills = parsed_data.get("technical_skills", [])
                    if tech_skills:
                        st.write(", ".join(tech_skills))
                    else:
                        st.write("No technical skills found")
                    
                    # Soft skills
                    st.write("**Soft Skills:**")
                    soft_skills = parsed_data.get("soft_skills", [])
                    if soft_skills:
                        st.write(", ".join(soft_skills))
                    else:
                        st.write("No soft skills found")
                    
                    # General skills
                    st.write("**General Skills:**")
                    skills = parsed_data.get("skills", [])
                    if skills:
                        st.write(", ".join(skills))
                    else:
                        st.write("No general skills found")
                    
                    st.markdown("### Education")
                    for edu in parsed_data.get("education", []):
                        st.write(f"**{edu.get('degree', 'Degree')}** - {edu.get('institution', 'Institution')}")
                        st.write(f"*{edu.get('year', 'Year not specified')}*")
                    
                    st.write(f"**Years of Experience:** {parsed_data.get('years_of_experience', 'Not specified')}")
st.markdown("---")
st.subheader("Step 2: Job Search")

# Location input only (job roles are now automated)
location = st.text_input("Enter your preferred location (e.g., 'New York', 'Remote')")

# Display suggested job roles if available
if st.session_state.resume_parsed and st.session_state.suggested_job_roles:
    st.markdown("### Suggested Job Roles Based on Your Skills")
    
    # Add custom roles to session state if not already there
    if 'custom_job_roles' not in st.session_state:
        st.session_state.custom_job_roles = []
    
    # Combine suggested and custom roles
    all_job_roles = list(st.session_state.suggested_job_roles) + list(st.session_state.custom_job_roles)
    
    # Create a row with text input and add button
    col1, col2 = st.columns([3, 1])
    with col1:
        custom_role = st.text_input("Add your own job role", key="custom_role_input")
    with col2:
        if st.button("Add Role"):
            if custom_role and custom_role not in all_job_roles:
                st.session_state.custom_job_roles.append(custom_role)
                st.success(f"Added: {custom_role}")
                # Rerun to update the interface
                st.rerun()
    
    # Display job roles as selectable options (both suggested and custom)
    selected_roles = st.multiselect(
        "Select job roles to search for",
        options=all_job_roles,
        default=st.session_state.suggested_job_roles
    )
    
    # Display job roles as selectable options
    # selected_roles = st.multiselect(
    #     "Select job roles to search for",
    #     options=st.session_state.suggested_job_roles,
    #     default=st.session_state.suggested_job_roles
    # )
    
    # Add filter options to sidebar
    st.sidebar.markdown("### Filter Options")

    # Remote work filter
    st.sidebar.checkbox("Remote Only", key="filter_remote_only")

    # Employment type filter
    employment_types = ["FULLTIME", "PARTTIME", "CONTRACTOR", "INTERN"]
    st.sidebar.multiselect(
        "Employment Type", 
        employment_types,
        default=None,
        key="filter_employment_types"
    )

    # Date posted filter
    date_options = {
        "Any time": 0,
        "Past 24 hours": 1,
        "Past week": 7,
        "Past month": 30
    }
    selected_date = st.sidebar.selectbox(
        "Date Posted",
        options=list(date_options.keys()),
        index=0
    )
    st.session_state.filter_date_posted = date_options[selected_date]

    # Salary range filter (only if salary data is available)
    st.sidebar.markdown("### Salary Range")
    col1, col2 = st.sidebar.columns(2)
    with col1:
        st.number_input("Min ($)", value=0, step=10000, key="min_salary")
    with col2:
        st.number_input("Max ($)", value=1000000, step=10000, key="max_salary")

    # Company type filter
    company_types = ["Public", "Private", "Nonprofit", "Government", "Startup", "Other"]
    st.sidebar.multiselect(
        "Company Type", 
        company_types,
        default=None,
        key="filter_company_types"
    )
    
    # Search button
    if st.button("Search Jobs"):
        if selected_roles:
            with st.spinner('Searching for jobs across selected roles...'):
                # Search for jobs for each selected role
                jobs_by_role = search_jobs_for_roles(selected_roles, location)
                
                # Store the results in session state
                st.session_state.jobs_by_role = jobs_by_role
                st.session_state.search_completed = True
        else:
            st.warning("Please select at least one job role")
else:
    # If no resume uploaded or no job roles suggested
    st.info("Upload your resume first to get AI-suggested job roles based on your skills")
    
    # Manual job search fallback
    search_query = st.text_input("Or enter your job search query manually (e.g., 'Python Developer')")
    
    if st.button("Search Jobs"):
        if search_query:
            with st.spinner('Searching for jobs...'):
                # Search for jobs
                job_results = search_jobs(search_query, location)
                
                # Store the results in session state
                st.session_state.job_results = job_results.get('data', [])
                st.session_state.jobs_by_role = {search_query: job_results.get('data', [])}
                st.session_state.search_completed = True
        else:
            st.warning("Please enter a search query or upload your resume for job suggestions")

# Display Results
if st.session_state.search_completed:
    st.markdown("---")
    st.subheader("Job Search Results")
    
    if st.session_state.jobs_by_role:
        total_jobs_found = sum(len(jobs) for jobs in st.session_state.jobs_by_role.values())
        st.success(f"Found a total of {total_jobs_found} jobs matching your criteria")
        
        # Display jobs grouped by role
        for role, jobs in st.session_state.jobs_by_role.items():
            if jobs:
                # Apply filters to this role's jobs
                filtered_jobs = apply_filters(jobs)
                
                if filtered_jobs:
                    with st.expander(f"πŸ“Œ {role} Jobs ({len(filtered_jobs)})", expanded=False):
                        st.markdown(f"### {role} Positions")
                        
                        # Calculate skill match percentages if resume is uploaded
                        if st.session_state.resume_parsed:
                            # Extract all skills from resume
                            tech_skills = set(st.session_state.parsed_data.get("technical_skills", []))
                            general_skills = set(st.session_state.parsed_data.get("skills", []))
                            soft_skills = set(st.session_state.parsed_data.get("soft_skills", []))
                            all_skills = tech_skills.union(general_skills).union(soft_skills)
                            
                            # Add match score to each job
                            for job in filtered_jobs:
                                if job.get('job_description'):
                                    desc = job.get('job_description', '').lower()
                                    matched_skills = [skill for skill in all_skills if skill.lower() in desc]
                                    match_percentage = int((len(matched_skills) / max(1, len(all_skills))) * 100)
                                    job['match_percentage'] = match_percentage
                                    job['matched_skills'] = matched_skills
                                else:
                                    job['match_percentage'] = 0
                                    job['matched_skills'] = []
                            
                            # Sort by match percentage
                            filtered_jobs = sorted(filtered_jobs, key=lambda x: x.get('match_percentage', 0), reverse=True)
                        
                        # Display each job in this role category
                        for job_idx, job in enumerate(filtered_jobs):
                            # Customize job title based on match percentage if resume uploaded
                            if st.session_state.resume_parsed and 'match_percentage' in job:
                                job_title = f"{job_idx+1}. {job.get('job_title', 'Job Title Not Available')} - {job.get('employer_name', 'Company Not Available')} "
                                job_title += f"[Match: {job.get('match_percentage')}%]"
                            else:
                                job_title = f"{job_idx+1}. {job.get('job_title', 'Job Title Not Available')} - {job.get('employer_name', 'Company Not Available')}"
                            
                            # Use a container instead of an expander to avoid nesting
                            job_container = st.container()
                            
                            # Add a visual separator between jobs
                            st.markdown("---")
                            
                            # Display job title with formatted styling
                            job_container.markdown(f"#### {job_title}")
                            
                            # Create columns for job details
                            cols = job_container.columns([2, 1])
                            
                            with cols[0]:
                                # Job details
                                st.write(f"**Company:** {job.get('employer_name', 'Not Available')}")
                                st.write(f"**Location:** {job.get('job_city', 'Not Available')}, {job.get('job_country', 'Not Available')}")
                                st.write(f"**Employment Type:** {job.get('job_employment_type', 'Not Available')}")
                                
                                # Remote information
                                st.write(f"**Remote:** {'Yes' if job.get('job_is_remote') else 'No'}")
                                
                                # Date posted and expiration
                                if job.get('job_posted_at_datetime_utc'):
                                    st.write(f"**Posted:** {job.get('job_posted_at_datetime_utc', 'Not Available')}")
                                
                                # Salary information
                                if job.get('job_min_salary') and job.get('job_max_salary'):
                                    st.write(f"**Salary Range:** ${job.get('job_min_salary', 'Not Available')} - ${job.get('job_max_salary', 'Not Available')} {job.get('job_salary_currency', 'USD')}")
                            
                            with cols[1]:
                                # Enhanced skills match section
                                if st.session_state.resume_parsed:
                                    match_percentage = job.get('match_percentage', 0)
                                    matched_skills = job.get('matched_skills', [])
                                    
                                    # Create a visual progress bar for match percentage
                                    st.markdown("### Skills Match")
                                    
                                    # Color coding based on match percentage
                                    if match_percentage > 70:
                                        bar_color = "green"
                                    elif match_percentage > 40:
                                        bar_color = "orange"
                                    else:
                                        bar_color = "red"
                                        
                                    # Display progress bar
                                    st.progress(match_percentage / 100)
                                    st.markdown(f"<h4 style='color:{bar_color};margin-top:0'>{match_percentage}% Match</h4>", unsafe_allow_html=True)
                                    
                                    if matched_skills:
                                        st.markdown("**Matching Skills:**")
                                        skill_cols = st.columns(2)
                                        for skill_idx, skill in enumerate(matched_skills[:10]):
                                            col_idx = skill_idx % 2
                                            with skill_cols[col_idx]:
                                                st.markdown(f"βœ… {skill}")
                                                
                                        if len(matched_skills) > 10:
                                            st.markdown(f"*...and {len(matched_skills)-10} more*")
                                    else:
                                        st.write("⚠️ No direct skill matches found")
                            
                            # Description
                            job_container.markdown("**Job Description:**")
                            full_desc = job.get('job_description', 'No description available')
                            
                            if len(full_desc) > 1000:
                                job_container.markdown(full_desc[:1000] + "...")
                                if job_container.button(f"Show Full Description for Job {job_idx+1}", key=f"show_desc_{role}_{job_idx}"):
                                    job_container.markdown(full_desc)
                            else:
                                job_container.markdown(full_desc)

                            # Display ALL application links
                            job_container.markdown("**Apply Links:**")
                            apply_options = job.get('apply_options', [])
                            if apply_options:
                                for option in apply_options:
                                    job_container.markdown(f"[Apply on {option.get('publisher', 'Job Board')}]({option.get('apply_link')})")
                            elif job.get('job_apply_link'):
                                job_container.markdown(f"[Apply for this job]({job.get('job_apply_link')})")
                else:
                    st.info(f"No {role} jobs match your filters. Try adjusting your filter criteria.")
            else:
                st.info(f"No {role} jobs found matching your search criteria.")
    else:
        st.info("No jobs found matching your search criteria. Try adjusting your search terms or location.")


st.markdown("---")
st.markdown("### How to use this app")
st.markdown("""
1. Upload your resume in PDF format to extract your skills and experience
2. Enter your job search query and preferred location
3. Review job listings and apply directly to positions you're interested in
""")


# Display app statistics
st.sidebar.markdown("### App Statistics")
if st.session_state.resume_parsed:
    st.sidebar.success("βœ… Resume Parsed")
    skill_count = len(st.session_state.parsed_data.get("skills", [])) + len(st.session_state.parsed_data.get("technical_skills", []))
    st.sidebar.metric("Skills Detected", skill_count)
    
    if st.session_state.suggested_job_roles:
        st.sidebar.metric("Job Roles Suggested", len(st.session_state.suggested_job_roles))
else:
    st.sidebar.warning("❌ No Resume Uploaded")

if st.session_state.search_completed:
    st.sidebar.success("βœ… Job Search Completed")
    total_jobs = sum(len(jobs) for jobs in st.session_state.jobs_by_role.values()) if st.session_state.jobs_by_role else len(st.session_state.job_results)
    st.sidebar.metric("Jobs Found", total_jobs)
else:
    st.sidebar.warning("❌ No Search Performed")