Spaces:
Sleeping
Sleeping
File size: 20,183 Bytes
7eb1624 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
import streamlit as st
import http.client
import json
import os
import PyPDF2
import io
from google import genai
import requests
from dotenv import load_dotenv
import time
# Load environment variables from .env file
load_dotenv()
# Configure page
st.set_page_config(page_title="AI Job Finder", page_icon="πΌ", layout="wide")
# Styling
st.markdown("""
<style>
.main-header {
font-size: 2.5rem;
color: #4169E1;
}
.sub-header {
font-size: 1.5rem;
color: #6C757D;
}
.success-message {
background-color: #D4EDDA;
color: #155724;
padding: 10px;
border-radius: 5px;
margin-bottom: 20px;
}
.info-box {
background-color: #E7F3FE;
border-left: 6px solid #2196F3;
padding: 10px;
margin-bottom: 15px;
}
.search-options {
margin-top: 20px;
margin-bottom: 20px;
}
</style>
""", unsafe_allow_html=True)
# Header
st.markdown('<p class="main-header">AI-Powered Job Finder</p>', unsafe_allow_html=True)
st.markdown('<p class="sub-header">Upload your resume and find relevant jobs</p>', unsafe_allow_html=True)
# Initialize session state variables
if 'resume_text' not in st.session_state:
st.session_state.resume_text = ""
if 'resume_parsed' not in st.session_state:
st.session_state.resume_parsed = False
if 'parsed_data' not in st.session_state:
st.session_state.parsed_data = {}
if 'job_results' not in st.session_state:
st.session_state.job_results = []
if 'search_completed' not in st.session_state:
st.session_state.search_completed = False
# Define the JSON schema for resume parsing
RESUME_SCHEMA = {
"schema": {
"basic_info": {
"name": "string",
"email": "string",
"phone": "string",
"location": "string"
},
"professional_summary": "string",
"skills": ["string"],
"technical_skills": ["string"],
"soft_skills": ["string"],
"experience": [{
"job_title": "string",
"company": "string",
"duration": "string",
"description": "string"
}],
"education": [{
"degree": "string",
"institution": "string",
"year": "string"
}],
"certifications": ["string"],
"years_of_experience": "number"
}
}
# Function to extract text from PDF
def extract_text_from_pdf(pdf_file):
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ""
for page_num in range(len(pdf_reader.pages)):
text += pdf_reader.pages[page_num].extract_text()
return text
# Function to parse resume with Gemini
def parse_resume_with_gemini(resume_text):
try:
# Configure the Gemini API
client = genai.Client(api_key=os.getenv('GEMINI_API_KEY'))
# Construct the prompt with schema
prompt = f"""
Parse the following resume text and extract information according to this exact JSON schema:
{json.dumps(RESUME_SCHEMA, indent=2)}
Resume text:
{resume_text}
Make sure to follow the schema exactly. If any information is not available, use empty strings or empty arrays as appropriate.
Return ONLY the JSON object with no additional text.
"""
# Get the model
# Generate the response
response = client.models.generate_content(model="gemini-2.0-flash", contents=prompt)
# Parse the response to get JSON
try:
parsed_data = json.loads(response.text)
return parsed_data
except json.JSONDecodeError:
# Try to extract JSON from the text if not directly parseable
import re
json_match = re.search(r'```json\n(.*?)\n```', response.text, re.DOTALL)
if json_match:
return json.loads(json_match.group(1))
else:
st.error("Could not parse the response as JSON")
return RESUME_SCHEMA["schema"]
except Exception as e:
st.error(f"Error parsing resume: {str(e)}")
return RESUME_SCHEMA["schema"]
# Function to search for jobs
def search_jobs(query, location="", page=1):
try:
conn = http.client.HTTPSConnection("jsearch.p.rapidapi.com")
# Format the query string
search_query = query.replace(" ", "%20")
if location:
search_query += f"%20in%20{location.replace(' ', '%20')}"
headers = {
'X-RapidAPI-Key': os.getenv('RAPIDAPI_KEY'),
'X-RapidAPI-Host': "jsearch.p.rapidapi.com"
}
conn.request("GET", f"/search?query={search_query}&page={page}&num_pages=1", headers=headers)
res = conn.getresponse()
data = res.read()
return json.loads(data.decode("utf-8"))
except Exception as e:
st.error(f"Error searching for jobs: {str(e)}")
return {"data": []}
if 'filter_remote_only' not in st.session_state:
st.session_state.filter_remote_only = False
if 'filter_employment_types' not in st.session_state:
st.session_state.filter_employment_types = []
if 'filter_date_posted' not in st.session_state:
st.session_state.filter_date_posted = 0
if 'min_salary' not in st.session_state:
st.session_state.min_salary = 0
if 'max_salary' not in st.session_state:
st.session_state.max_salary = 1000000
if 'filter_company_types' not in st.session_state:
st.session_state.filter_company_types = []
# Function to apply filters to job results
def apply_filters(jobs):
filtered_jobs = []
for job in jobs:
# Check remote filter
if st.session_state.filter_remote_only and not job.get('job_is_remote', False):
continue
# Check employment type filter
if st.session_state.filter_employment_types and job.get('job_employment_type') not in st.session_state.filter_employment_types:
continue
# Check date posted filter (in days)
if st.session_state.filter_date_posted > 0:
current_time = int(time.time())
posted_time = job.get('job_posted_at_timestamp', 0)
days_ago = (current_time - posted_time) / (60 * 60 * 24)
if days_ago > st.session_state.filter_date_posted:
continue
# Check salary filter
if job.get('job_min_salary') is not None and job.get('job_min_salary') < st.session_state.min_salary:
continue
if job.get('job_max_salary') is not None and job.get('job_max_salary') > st.session_state.max_salary:
continue
# Check company type filter
if st.session_state.filter_company_types and job.get('employer_company_type') not in st.session_state.filter_company_types:
continue
# All filters passed, add job to filtered results
filtered_jobs.append(job)
return filtered_jobs
# Resume Upload Section
st.subheader("Step 1: Upload Your Resume First")
uploaded_file = st.file_uploader("Upload your resume (PDF format)", type=['pdf'])
if uploaded_file is not None:
with st.spinner('Processing your resume...'):
# Extract text from the PDF
resume_text = extract_text_from_pdf(uploaded_file)
st.session_state.resume_text = resume_text
# Parse the resume
parsed_data = parse_resume_with_gemini(resume_text)
st.session_state.parsed_data = parsed_data
st.session_state.resume_parsed = True
# Display the parsed information
with st.expander("Resume Parsed Information", expanded=True):
col1, col2 = st.columns(2)
with col1:
st.markdown("### Basic Information")
basic_info = parsed_data.get("basic_info", {})
st.write(f"**Name:** {basic_info.get('name', 'Not found')}")
st.write(f"**Email:** {basic_info.get('email', 'Not found')}")
st.write(f"**Phone:** {basic_info.get('phone', 'Not found')}")
st.write(f"**Location:** {basic_info.get('location', 'Not found')}")
st.markdown("### Experience")
for exp in parsed_data.get("experience", []):
st.markdown(f"**{exp.get('job_title', 'Role')} at {exp.get('company', 'Company')}**")
st.write(f"*{exp.get('duration', 'Duration not specified')}*")
st.write(exp.get('description', 'No description available'))
st.write("---")
with col2:
st.markdown("### Skills")
# Technical skills
st.write("**Technical Skills:**")
tech_skills = parsed_data.get("technical_skills", [])
if tech_skills:
st.write(", ".join(tech_skills))
else:
st.write("No technical skills found")
# Soft skills
st.write("**Soft Skills:**")
soft_skills = parsed_data.get("soft_skills", [])
if soft_skills:
st.write(", ".join(soft_skills))
else:
st.write("No soft skills found")
# General skills
st.write("**General Skills:**")
skills = parsed_data.get("skills", [])
if skills:
st.write(", ".join(skills))
else:
st.write("No general skills found")
st.markdown("### Education")
for edu in parsed_data.get("education", []):
st.write(f"**{edu.get('degree', 'Degree')}** - {edu.get('institution', 'Institution')}")
st.write(f"*{edu.get('year', 'Year not specified')}*")
st.write(f"**Years of Experience:** {parsed_data.get('years_of_experience', 'Not specified')}")
st.markdown("---")
st.subheader("Step 2: Search for Jobs")
# Query input
search_query = st.text_input("Enter your job search query (e.g., 'Python Developer')")
location = st.text_input("Location (e.g., 'New York', 'Remote')")
# Add filter options to sidebar
st.sidebar.markdown("### Filter Options")
# Remote work filter
st.sidebar.checkbox("Remote Only", key="filter_remote_only")
# Employment type filter
employment_types = ["FULLTIME", "PARTTIME", "CONTRACTOR", "INTERN"]
st.sidebar.multiselect(
"Employment Type",
employment_types,
default=None,
key="filter_employment_types"
)
# Date posted filter
date_options = {
"Any time": 0,
"Past 24 hours": 1,
"Past week": 7,
"Past month": 30
}
selected_date = st.sidebar.selectbox(
"Date Posted",
options=list(date_options.keys()),
index=0
)
st.session_state.filter_date_posted = date_options[selected_date]
# Salary range filter (only if salary data is available)
st.sidebar.markdown("### Salary Range")
col1, col2 = st.sidebar.columns(2)
with col1:
st.number_input("Min ($)", value=0, step=10000, key="min_salary")
with col2:
st.number_input("Max ($)", value=1000000, step=10000, key="max_salary")
# Company type filter
company_types = ["Public", "Private", "Nonprofit", "Government", "Startup", "Other"]
st.sidebar.multiselect(
"Company Type",
company_types,
default=None,
key="filter_company_types"
)
if st.button("Search Jobs"):
if search_query:
with st.spinner('Searching for jobs...'):
final_query = search_query
# Search for jobs
job_results = search_jobs(final_query, location)
# Store the results in session state
st.session_state.job_results = job_results.get('data', [])
st.session_state.search_completed = True
else:
st.warning("Please enter a search query")
# Display Results
if st.session_state.search_completed:
st.markdown("---")
st.subheader("Job Search Results")
if st.session_state.job_results:
# Apply filters
filtered_jobs = apply_filters(st.session_state.job_results)
if filtered_jobs:
st.success(f"Found {len(filtered_jobs)} jobs matching your criteria")
# Calculate skill match percentages if resume is uploaded
if st.session_state.resume_parsed:
# Extract all skills from resume
tech_skills = set(st.session_state.parsed_data.get("technical_skills", []))
general_skills = set(st.session_state.parsed_data.get("skills", []))
soft_skills = set(st.session_state.parsed_data.get("soft_skills", []))
all_skills = tech_skills.union(general_skills).union(soft_skills)
# Add match score to each job
for job in filtered_jobs:
if job.get('job_description'):
desc = job.get('job_description', '').lower()
matched_skills = [skill for skill in all_skills if skill.lower() in desc]
match_percentage = int((len(matched_skills) / max(1, len(all_skills))) * 100)
job['match_percentage'] = match_percentage
job['matched_skills'] = matched_skills
else:
job['match_percentage'] = 0
job['matched_skills'] = []
# Option to sort by match percentage
sort_by_match = st.checkbox("Sort jobs by skill match percentage", value=True)
if sort_by_match:
filtered_jobs = sorted(filtered_jobs, key=lambda x: x.get('match_percentage', 0), reverse=True)
for job_idx, job in enumerate(filtered_jobs):
# Customize job title based on match percentage if resume uploaded
if st.session_state.resume_parsed and 'match_percentage' in job:
job_title = f"{job_idx+1}. {job.get('job_title', 'Job Title Not Available')} - {job.get('employer_name', 'Company Not Available')} "
job_title += f"[Match: {job.get('match_percentage')}%]"
else:
job_title = f"{job_idx+1}. {job.get('job_title', 'Job Title Not Available')} - {job.get('employer_name', 'Company Not Available')}"
with st.expander(job_title):
cols = st.columns([2, 1])
with cols[0]:
# Job details
st.write(f"**Company:** {job.get('employer_name', 'Not Available')}")
st.write(f"**Location:** {job.get('job_city', 'Not Available')}, {job.get('job_country', 'Not Available')}")
st.write(f"**Employment Type:** {job.get('job_employment_type', 'Not Available')}")
# Remote information
st.write(f"**Remote:** {'Yes' if job.get('job_is_remote') else 'No'}")
# Date posted and expiration
if job.get('job_posted_at_datetime_utc'):
st.write(f"**Posted:** {job.get('job_posted_at_datetime_utc', 'Not Available')}")
# Salary information
if job.get('job_min_salary') and job.get('job_max_salary'):
st.write(f"**Salary Range:** ${job.get('job_min_salary', 'Not Available')} - ${job.get('job_max_salary', 'Not Available')} {job.get('job_salary_currency', 'USD')}")
with cols[1]:
# Enhanced skills match section
if st.session_state.resume_parsed:
match_percentage = job.get('match_percentage', 0)
matched_skills = job.get('matched_skills', [])
# Create a visual progress bar for match percentage
st.markdown("### Skills Match")
# Color coding based on match percentage
if match_percentage > 70:
bar_color = "green"
elif match_percentage > 40:
bar_color = "orange"
else:
bar_color = "red"
# Display progress bar
st.progress(match_percentage / 100)
st.markdown(f"<h4 style='color:{bar_color};margin-top:0'>{match_percentage}% Match</h4>", unsafe_allow_html=True)
if matched_skills:
st.markdown("**Matching Skills:**")
skill_cols = st.columns(2)
for skill_idx, skill in enumerate(matched_skills[:10]): # Changed variable name from i to skill_idx
col_idx = skill_idx % 2
with skill_cols[col_idx]:
st.markdown(f"β
{skill}")
if len(matched_skills) > 10:
st.markdown(f"*...and {len(matched_skills)-10} more*")
else:
st.write("β οΈ No direct skill matches found")
# Description
st.markdown("**Job Description:**")
full_desc = job.get('job_description', 'No description available')
if len(full_desc) > 1000:
st.markdown(full_desc[:1000] + "...")
if st.button(f"Show Full Description for Job {job_idx+1}", key=f"show_desc_{job_idx}"):
st.markdown(full_desc)
else:
st.markdown(full_desc)
# Display ALL application links
st.markdown("**Apply Links:**")
apply_options = job.get('apply_options', [])
if apply_options:
for option in apply_options:
st.markdown(f"[Apply on {option.get('publisher', 'Job Board')}]({option.get('apply_link')})")
elif job.get('job_apply_link'):
st.markdown(f"[Apply for this job]({job.get('job_apply_link')})")
else:
st.info("No jobs match your filters. Try adjusting your filter criteria.")
else:
st.info("No jobs found matching your search criteria. Try adjusting your search terms or location.")
st.markdown("---")
st.markdown("### How to use this app")
st.markdown("""
1. Upload your resume in PDF format to extract your skills and experience
2. Enter your job search query and preferred location
3. Review job listings and apply directly to positions you're interested in
""")
# Display app statistics
st.sidebar.markdown("### App Statistics")
if st.session_state.resume_parsed:
st.sidebar.success("β
Resume Parsed")
skill_count = len(st.session_state.parsed_data.get("skills", [])) + len(st.session_state.parsed_data.get("technical_skills", []))
st.sidebar.metric("Skills Detected", skill_count)
else:
st.sidebar.warning("β No Resume Uploaded")
if st.session_state.search_completed:
st.sidebar.success("β
Job Search Completed")
st.sidebar.metric("Jobs Found", len(st.session_state.job_results))
else:
st.sidebar.warning("β No Search Performed") |