File size: 6,597 Bytes
d3bc7f9
 
 
 
 
 
 
 
 
 
bf9ea44
d3bc7f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6941e99
 
 
d3bc7f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f38509e
d3bc7f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import random

import gradio as gr
import numpy as np

import spaces
import torch
from torchvision import transforms
from transformers import AutoModelForImageSegmentation

from inference_i2mv_sdxl import prepare_pipeline, remove_bg, run_pipeline

# Device and dtype
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

# Hyperparameters
NUM_VIEWS = 6
HEIGHT = 768
WIDTH = 768
MAX_SEED = np.iinfo(np.int32).max

pipe = prepare_pipeline(
    base_model="stabilityai/stable-diffusion-xl-base-1.0",
    vae_model="madebyollin/sdxl-vae-fp16-fix",
    unet_model=None,
    lora_model=None,
    adapter_path="huanngzh/mv-adapter",
    scheduler=None,
    num_views=NUM_VIEWS,
    device=device,
    dtype=dtype,
)

# remove bg
birefnet = AutoModelForImageSegmentation.from_pretrained(
    "ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to(device)
transform_image = transforms.Compose(
    [
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ]
)


@spaces.GPU()
def infer(
    prompt,
    image,
    do_rembg=True,
    seed=42,
    randomize_seed=False,
    guidance_scale=3.0,
    num_inference_steps=30,
    reference_conditioning_scale=1.0,
    negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
    progress=gr.Progress(track_tqdm=True),
):
    if do_rembg:
        remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, device)
    else:
        remove_bg_fn = None
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    if isinstance(seed, str):
        try:
            seed = int(seed.strip())
        except ValueError:
            seed = 42

    images, preprocessed_image = run_pipeline(
        pipe,
        num_views=NUM_VIEWS,
        text=prompt,
        image=image,
        height=HEIGHT,
        width=WIDTH,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        seed=seed,
        remove_bg_fn=remove_bg_fn,
        reference_conditioning_scale=reference_conditioning_scale,
        negative_prompt=negative_prompt,
        device=device,
    )
    return images, preprocessed_image, seed


examples = [
    [
        "A decorative figurine of a young anime-style girl",
        "assets/demo/i2mv/A_decorative_figurine_of_a_young_anime-style_girl.png",
        True,
        21,
    ],
    [
        "A juvenile emperor penguin chick",
        "assets/demo/i2mv/A_juvenile_emperor_penguin_chick.png",
        True,
        0,
    ],
    [
        "A striped tabby cat with white fur sitting upright",
        "assets/demo/i2mv/A_striped_tabby_cat_with_white_fur_sitting_upright.png",
        True,
        0,
    ],
]


with gr.Blocks() as demo:
    with gr.Row():
        gr.Markdown(
            f"""# MV-Adapter [Image-to-Multi-View]
Generate 768x768 multi-view images from a single image using SDXL <br>
Check our [project page](https://huanngzh.github.io/MV-Adapter-Page/) and [github repo](https://github.com/huanngzh/MV-Adapter) for details <br>
Also try our other demos: [Text-to-Multiview (General)](https://huggingface.co/spaces/VAST-AI/MV-Adapter-T2MV-SDXL) | [Text-to-Multiview (Anime)](https://huggingface.co/spaces/huanngzh/MV-Adapter-T2MV-Anime) | [Image-to-Multiview](https://huggingface.co/spaces/VAST-AI/MV-Adapter-I2MV-SDXL) <br>
**Tips:** if error occurs, wait for a few seconds and try again
        """
        )

    with gr.Row():
        with gr.Column():
            with gr.Row():
                input_image = gr.Image(
                    label="Input Image",
                    sources=["upload", "webcam", "clipboard"],
                    type="pil",
                )
                preprocessed_image = gr.Image(label="Preprocessed Image", type="pil")

            prompt = gr.Textbox(
                label="Prompt", placeholder="Enter your prompt", value="high quality"
            )
            do_rembg = gr.Checkbox(label="Remove background", value=True)
            run_button = gr.Button("Run")

            with gr.Accordion("Advanced Settings", open=False):
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

                with gr.Row():
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=1,
                        maximum=50,
                        step=1,
                        value=30,
                    )

                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="CFG scale",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.1,
                        value=3.0,
                    )

                with gr.Row():
                    reference_conditioning_scale = gr.Slider(
                        label="Image conditioning scale",
                        minimum=0.0,
                        maximum=2.0,
                        step=0.1,
                        value=1.0,
                    )

                with gr.Row():
                    negative_prompt = gr.Textbox(
                        label="Negative prompt",
                        placeholder="Enter your negative prompt",
                        value="watermark, ugly, deformed, noisy, blurry, low contrast",
                    )

        with gr.Column():
            result = gr.Gallery(
                label="Result",
                show_label=False,
                columns=[3],
                rows=[2],
                object_fit="contain",
                height="auto",
            )

    with gr.Row():
        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt, input_image, do_rembg, seed],
            outputs=[result, preprocessed_image, seed],
            cache_examples=True,
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            input_image,
            do_rembg,
            seed,
            randomize_seed,
            guidance_scale,
            num_inference_steps,
            reference_conditioning_scale,
            negative_prompt,
        ],
        outputs=[result, preprocessed_image, seed],
    )

demo.launch()