MIDI-3D / scripts /inference_midi.py
huanngzh's picture
update
c9724af
import argparse
import os
from glob import glob
from typing import Any, List, Union
import gradio as gr
import numpy as np
import torch
import trimesh
from huggingface_hub import snapshot_download
from PIL import Image, ImageOps
from skimage import measure
from midi.pipelines.pipeline_midi import MIDIPipeline
from midi.utils.smoothing import smooth_gpu
def preprocess_image(rgb_image, seg_image):
if isinstance(rgb_image, str):
rgb_image = Image.open(rgb_image)
if isinstance(seg_image, str):
seg_image = Image.open(seg_image)
rgb_image = rgb_image.convert("RGB")
seg_image = seg_image.convert("L")
width, height = rgb_image.size
seg_np = np.array(seg_image)
rows, cols = np.where(seg_np > 0)
if rows.size == 0 or cols.size == 0:
return rgb_image, seg_image
# compute the bounding box of combined instances
min_row, max_row = min(rows), max(rows)
min_col, max_col = min(cols), max(cols)
L = max(
max(abs(max_row - width // 2), abs(min_row - width // 2)) * 2,
max(abs(max_col - height // 2), abs(min_col - height // 2)) * 2,
)
# pad the image
if L > width * 0.8:
width = int(L / 4 * 5)
if L > height * 0.8:
height = int(L / 4 * 5)
rgb_new = Image.new("RGB", (width, height), (255, 255, 255))
seg_new = Image.new("L", (width, height), 0)
x_offset = (width - rgb_image.size[0]) // 2
y_offset = (height - rgb_image.size[1]) // 2
rgb_new.paste(rgb_image, (x_offset, y_offset))
seg_new.paste(seg_image, (x_offset, y_offset))
# pad to the square
max_dim = max(width, height)
rgb_new = ImageOps.expand(
rgb_new, border=(0, 0, max_dim - width, max_dim - height), fill="white"
)
seg_new = ImageOps.expand(
seg_new, border=(0, 0, max_dim - width, max_dim - height), fill=0
)
return rgb_new, seg_new
def split_rgb_mask(rgb_image, seg_image):
if isinstance(rgb_image, str):
rgb_image = Image.open(rgb_image)
if isinstance(seg_image, str):
seg_image = Image.open(seg_image)
rgb_image = rgb_image.convert("RGB")
seg_image = seg_image.convert("L")
rgb_array = np.array(rgb_image)
seg_array = np.array(seg_image)
label_ids = np.unique(seg_array)
label_ids = label_ids[label_ids > 0]
instance_rgbs, instance_masks, scene_rgbs = [], [], []
for segment_id in sorted(label_ids):
# Here we set the background to white
white_background = np.ones_like(rgb_array) * 255
mask = np.zeros_like(seg_array, dtype=np.uint8)
mask[seg_array == segment_id] = 255
segment_rgb = white_background.copy()
segment_rgb[mask == 255] = rgb_array[mask == 255]
segment_rgb_image = Image.fromarray(segment_rgb)
segment_mask_image = Image.fromarray(mask)
instance_rgbs.append(segment_rgb_image)
instance_masks.append(segment_mask_image)
scene_rgbs.append(rgb_image)
return instance_rgbs, instance_masks, scene_rgbs
@torch.no_grad()
def run_midi(
pipe: Any,
rgb_image: Union[str, Image.Image],
seg_image: Union[str, Image.Image],
seed: int,
num_inference_steps: int = 50,
guidance_scale: float = 7.0,
do_image_padding: bool = False,
) -> trimesh.Scene:
if do_image_padding:
rgb_image, seg_image = preprocess_image(rgb_image, seg_image)
instance_rgbs, instance_masks, scene_rgbs = split_rgb_mask(rgb_image, seg_image)
num_instances = len(instance_rgbs)
outputs = pipe(
image=instance_rgbs,
mask=instance_masks,
image_scene=scene_rgbs,
attention_kwargs={"num_instances": num_instances},
generator=torch.Generator(device=pipe.device).manual_seed(seed),
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
decode_progressive=True,
return_dict=False,
)
# marching cubes
trimeshes = []
for _, (logits_, grid_size, bbox_size, bbox_min, bbox_max) in enumerate(
zip(*outputs)
):
grid_logits = logits_.view(grid_size)
grid_logits = smooth_gpu(grid_logits, method="gaussian", sigma=1)
torch.cuda.empty_cache()
vertices, faces, normals, _ = measure.marching_cubes(
grid_logits.float().cpu().numpy(), 0, method="lewiner"
)
vertices = vertices / grid_size * bbox_size + bbox_min
# Trimesh
mesh = trimesh.Trimesh(vertices.astype(np.float32), np.ascontiguousarray(faces))
trimeshes.append(mesh)
# compose the output meshes
scene = trimesh.Scene(trimeshes)
return scene
if __name__ == "__main__":
device = "cuda"
dtype = torch.bfloat16
parser = argparse.ArgumentParser()
parser.add_argument("--rgb", type=str, required=True)
parser.add_argument("--seg", type=str, required=True)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--num-inference-steps", type=int, default=50)
parser.add_argument("--guidance-scale", type=float, default=7.0)
parser.add_argument("--do-image-padding", action="store_true")
parser.add_argument("--output-dir", type=str, default="./")
args = parser.parse_args()
local_dir = "pretrained_weights/MIDI-3D"
snapshot_download(repo_id="VAST-AI/MIDI-3D", local_dir=local_dir)
pipe: MIDIPipeline = MIDIPipeline.from_pretrained(local_dir).to(device, dtype)
pipe.init_custom_adapter(
set_self_attn_module_names=[
"blocks.8",
"blocks.9",
"blocks.10",
"blocks.11",
"blocks.12",
]
)
run_midi(
pipe,
rgb_image=args.rgb,
seg_image=args.seg,
seed=args.seed,
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale,
do_image_padding=args.do_image_padding,
).export(os.path.join(args.output_dir, "output.glb"))