|
""" OpenAI pretrained model functions |
|
|
|
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. |
|
""" |
|
|
|
|
|
import os |
|
import warnings |
|
from typing import Union, List |
|
|
|
import torch |
|
|
|
from .model import build_model_from_openai_state_dict |
|
from .pretrained import get_pretrained_url, list_pretrained_tag_models, download_pretrained |
|
|
|
__all__ = ["list_openai_models", "load_openai_model"] |
|
|
|
|
|
def list_openai_models() -> List[str]: |
|
"""Returns the names of available CLIP models""" |
|
return list_pretrained_tag_models('openai') |
|
|
|
|
|
def load_openai_model( |
|
name: str, |
|
device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", |
|
jit=True, |
|
): |
|
"""Load a CLIP model |
|
|
|
Parameters |
|
---------- |
|
name : str |
|
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict |
|
device : Union[str, torch.device] |
|
The device to put the loaded model |
|
jit : bool |
|
Whether to load the optimized JIT model (default) or more hackable non-JIT model. |
|
|
|
Returns |
|
------- |
|
model : torch.nn.Module |
|
The CLIP model |
|
preprocess : Callable[[PIL.Image], torch.Tensor] |
|
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input |
|
""" |
|
if get_pretrained_url(name, 'openai'): |
|
model_path = download_pretrained(get_pretrained_url(name, 'openai')) |
|
elif os.path.isfile(name): |
|
model_path = name |
|
else: |
|
raise RuntimeError(f"Model {name} not found; available models = {list_openai_models()}") |
|
|
|
try: |
|
|
|
model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval() |
|
state_dict = None |
|
except RuntimeError: |
|
|
|
if jit: |
|
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") |
|
jit = False |
|
state_dict = torch.load(model_path, map_location="cpu") |
|
|
|
if not jit: |
|
try: |
|
model = build_model_from_openai_state_dict(state_dict or model.state_dict()).to(device) |
|
except KeyError: |
|
sd = {k[7:]: v for k, v in state_dict["state_dict"].items()} |
|
model = build_model_from_openai_state_dict(sd).to(device) |
|
|
|
if str(device) == "cpu": |
|
model.float() |
|
return model |
|
|
|
|
|
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) |
|
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1] |
|
|
|
def patch_device(module): |
|
try: |
|
graphs = [module.graph] if hasattr(module, "graph") else [] |
|
except RuntimeError: |
|
graphs = [] |
|
|
|
if hasattr(module, "forward1"): |
|
graphs.append(module.forward1.graph) |
|
|
|
for graph in graphs: |
|
for node in graph.findAllNodes("prim::Constant"): |
|
if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"): |
|
node.copyAttributes(device_node) |
|
|
|
model.apply(patch_device) |
|
patch_device(model.encode_image) |
|
patch_device(model.encode_text) |
|
|
|
|
|
if str(device) == "cpu": |
|
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) |
|
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] |
|
float_node = float_input.node() |
|
|
|
def patch_float(module): |
|
try: |
|
graphs = [module.graph] if hasattr(module, "graph") else [] |
|
except RuntimeError: |
|
graphs = [] |
|
|
|
if hasattr(module, "forward1"): |
|
graphs.append(module.forward1.graph) |
|
|
|
for graph in graphs: |
|
for node in graph.findAllNodes("aten::to"): |
|
inputs = list(node.inputs()) |
|
for i in [1, 2]: |
|
if inputs[i].node()["value"] == 5: |
|
inputs[i].node().copyAttributes(float_node) |
|
|
|
model.apply(patch_float) |
|
patch_float(model.encode_image) |
|
patch_float(model.encode_text) |
|
model.float() |
|
|
|
|
|
model.visual.image_size = model.input_resolution.item() |
|
return model |
|
|