|
""" CLIP Model |
|
|
|
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. |
|
""" |
|
|
|
from .hf_model import HFTextEncoder |
|
from collections import OrderedDict |
|
from dataclasses import dataclass |
|
import logging |
|
import math |
|
from typing import Tuple, Union, Callable, Optional |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
from .timm_model import TimmModel |
|
from .utils import freeze_batch_norm_2d, to_2tuple |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, inplanes, planes, stride=1): |
|
super().__init__() |
|
|
|
|
|
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.relu1 = nn.ReLU(inplace=True) |
|
|
|
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.relu2 = nn.ReLU(inplace=True) |
|
|
|
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() |
|
|
|
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion) |
|
self.relu3 = nn.ReLU(inplace=True) |
|
|
|
self.downsample = None |
|
self.stride = stride |
|
|
|
if stride > 1 or inplanes != planes * Bottleneck.expansion: |
|
|
|
self.downsample = nn.Sequential(OrderedDict([ |
|
("-1", nn.AvgPool2d(stride)), |
|
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), |
|
("1", nn.BatchNorm2d(planes * self.expansion)) |
|
])) |
|
|
|
def forward(self, x: torch.Tensor): |
|
identity = x |
|
|
|
out = self.relu1(self.bn1(self.conv1(x))) |
|
out = self.relu2(self.bn2(self.conv2(out))) |
|
out = self.avgpool(out) |
|
out = self.bn3(self.conv3(out)) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu3(out) |
|
return out |
|
|
|
|
|
class AttentionPool2d(nn.Module): |
|
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): |
|
super().__init__() |
|
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) |
|
self.k_proj = nn.Linear(embed_dim, embed_dim) |
|
self.q_proj = nn.Linear(embed_dim, embed_dim) |
|
self.v_proj = nn.Linear(embed_dim, embed_dim) |
|
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) |
|
self.num_heads = num_heads |
|
|
|
def forward(self, x): |
|
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) |
|
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) |
|
x = x + self.positional_embedding[:, None, :].to(x.dtype) |
|
x, _ = F.multi_head_attention_forward( |
|
query=x, key=x, value=x, |
|
embed_dim_to_check=x.shape[-1], |
|
num_heads=self.num_heads, |
|
q_proj_weight=self.q_proj.weight, |
|
k_proj_weight=self.k_proj.weight, |
|
v_proj_weight=self.v_proj.weight, |
|
in_proj_weight=None, |
|
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), |
|
bias_k=None, |
|
bias_v=None, |
|
add_zero_attn=False, |
|
dropout_p=0, |
|
out_proj_weight=self.c_proj.weight, |
|
out_proj_bias=self.c_proj.bias, |
|
use_separate_proj_weight=True, |
|
training=self.training, |
|
need_weights=False |
|
) |
|
|
|
return x[0] |
|
|
|
|
|
class ModifiedResNet(nn.Module): |
|
""" |
|
A ResNet class that is similar to torchvision's but contains the following changes: |
|
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. |
|
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 |
|
- The final pooling layer is a QKV attention instead of an average pool |
|
""" |
|
|
|
def __init__(self, layers, output_dim, heads, image_size=224, width=64): |
|
super().__init__() |
|
self.output_dim = output_dim |
|
self.image_size = image_size |
|
|
|
|
|
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(width // 2) |
|
self.relu1 = nn.ReLU(inplace=True) |
|
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(width // 2) |
|
self.relu2 = nn.ReLU(inplace=True) |
|
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(width) |
|
self.relu3 = nn.ReLU(inplace=True) |
|
self.avgpool = nn.AvgPool2d(2) |
|
|
|
|
|
self._inplanes = width |
|
self.layer1 = self._make_layer(width, layers[0]) |
|
self.layer2 = self._make_layer(width * 2, layers[1], stride=2) |
|
self.layer3 = self._make_layer(width * 4, layers[2], stride=2) |
|
self.layer4 = self._make_layer(width * 8, layers[3], stride=2) |
|
|
|
embed_dim = width * 32 |
|
self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim) |
|
|
|
self.init_parameters() |
|
|
|
def _make_layer(self, planes, blocks, stride=1): |
|
layers = [Bottleneck(self._inplanes, planes, stride)] |
|
|
|
self._inplanes = planes * Bottleneck.expansion |
|
for _ in range(1, blocks): |
|
layers.append(Bottleneck(self._inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def init_parameters(self): |
|
if self.attnpool is not None: |
|
std = self.attnpool.c_proj.in_features ** -0.5 |
|
nn.init.normal_(self.attnpool.q_proj.weight, std=std) |
|
nn.init.normal_(self.attnpool.k_proj.weight, std=std) |
|
nn.init.normal_(self.attnpool.v_proj.weight, std=std) |
|
nn.init.normal_(self.attnpool.c_proj.weight, std=std) |
|
|
|
for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]: |
|
for name, param in resnet_block.named_parameters(): |
|
if name.endswith("bn3.weight"): |
|
nn.init.zeros_(param) |
|
|
|
def lock(self, unlocked_groups=0, freeze_bn_stats=False): |
|
assert unlocked_groups == 0, 'partial locking not currently supported for this model' |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
if freeze_bn_stats: |
|
freeze_batch_norm_2d(self) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
|
|
pass |
|
|
|
def stem(self, x): |
|
x = self.relu1(self.bn1(self.conv1(x))) |
|
x = self.relu2(self.bn2(self.conv2(x))) |
|
x = self.relu3(self.bn3(self.conv3(x))) |
|
x = self.avgpool(x) |
|
return x |
|
|
|
def forward(self, x): |
|
x = self.stem(x) |
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
x = self.attnpool(x) |
|
|
|
return x |
|
|
|
|
|
class LayerNorm(nn.LayerNorm): |
|
"""Subclass torch's LayerNorm to handle fp16.""" |
|
|
|
def forward(self, x: torch.Tensor): |
|
orig_type = x.dtype |
|
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) |
|
return x.to(orig_type) |
|
|
|
|
|
class QuickGELU(nn.Module): |
|
|
|
def forward(self, x: torch.Tensor): |
|
return x * torch.sigmoid(1.702 * x) |
|
|
|
|
|
class ResidualAttentionBlock(nn.Module): |
|
def __init__(self, d_model: int, n_head: int, mlp_ratio: float = 4.0, act_layer: Callable = nn.GELU): |
|
super().__init__() |
|
|
|
self.attn = nn.MultiheadAttention(d_model, n_head) |
|
self.ln_1 = LayerNorm(d_model) |
|
mlp_width = int(d_model * mlp_ratio) |
|
self.mlp = nn.Sequential(OrderedDict([ |
|
("c_fc", nn.Linear(d_model, mlp_width)), |
|
("gelu", act_layer()), |
|
("c_proj", nn.Linear(mlp_width, d_model)) |
|
])) |
|
self.ln_2 = LayerNorm(d_model) |
|
|
|
def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): |
|
return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0] |
|
|
|
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): |
|
x = x + self.attention(self.ln_1(x), attn_mask=attn_mask) |
|
x = x + self.mlp(self.ln_2(x)) |
|
return x |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__(self, width: int, layers: int, heads: int, mlp_ratio: float = 4.0, act_layer: Callable = nn.GELU): |
|
super().__init__() |
|
self.width = width |
|
self.layers = layers |
|
self.grad_checkpointing = False |
|
|
|
self.resblocks = nn.ModuleList([ |
|
ResidualAttentionBlock(width, heads, mlp_ratio, act_layer=act_layer) |
|
for _ in range(layers) |
|
]) |
|
|
|
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): |
|
for r in self.resblocks: |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint(r, x, attn_mask) |
|
else: |
|
x = r(x, attn_mask=attn_mask) |
|
return x |
|
|
|
|
|
class VisualTransformer(nn.Module): |
|
def __init__( |
|
self, image_size: int, patch_size: int, width: int, layers: int, heads: int, mlp_ratio: float, |
|
output_dim: int, act_layer: Callable = nn.GELU): |
|
super().__init__() |
|
self.image_size = to_2tuple(image_size) |
|
self.patch_size = to_2tuple(patch_size) |
|
self.grid_size = (self.image_size[0] // self.patch_size[0], self.image_size[1] // self.patch_size[1]) |
|
self.output_dim = output_dim |
|
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) |
|
|
|
scale = width ** -0.5 |
|
self.class_embedding = nn.Parameter(scale * torch.randn(width)) |
|
self.positional_embedding = nn.Parameter(scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width)) |
|
self.ln_pre = LayerNorm(width) |
|
|
|
self.transformer = Transformer(width, layers, heads, mlp_ratio, act_layer=act_layer) |
|
|
|
self.ln_post = LayerNorm(width) |
|
self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) |
|
|
|
def lock(self, unlocked_groups=0, freeze_bn_stats=False): |
|
assert unlocked_groups == 0, 'partial locking not currently supported for this model' |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.transformer.grad_checkpointing = enable |
|
|
|
def forward(self, x: torch.Tensor): |
|
x = self.conv1(x) |
|
x = x.reshape(x.shape[0], x.shape[1], -1) |
|
x = x.permute(0, 2, 1) |
|
x = torch.cat( |
|
[self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), |
|
x], dim=1) |
|
x = x + self.positional_embedding.to(x.dtype) |
|
x = self.ln_pre(x) |
|
|
|
x = x.permute(1, 0, 2) |
|
x = self.transformer(x) |
|
x = x.permute(1, 0, 2) |
|
|
|
x = self.ln_post(x[:, 0, :]) |
|
|
|
if self.proj is not None: |
|
x = x @ self.proj |
|
|
|
return x |
|
|
|
|
|
@dataclass |
|
class CLIPVisionCfg: |
|
layers: Union[Tuple[int, int, int, int], int] = 12 |
|
width: int = 768 |
|
head_width: int = 64 |
|
mlp_ratio: float = 4.0 |
|
patch_size: int = 16 |
|
image_size: Union[Tuple[int, int], int] = 224 |
|
timm_model_name: str = None |
|
timm_model_pretrained: bool = False |
|
timm_pool: str = 'avg' |
|
timm_proj: str = 'linear' |
|
|
|
|
|
@dataclass |
|
class CLIPTextCfg: |
|
context_length: int = 77 |
|
vocab_size: int = 49408 |
|
width: int = 512 |
|
heads: int = 8 |
|
layers: int = 12 |
|
|
|
|
|
class CLIP(nn.Module): |
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
vision_cfg: CLIPVisionCfg, |
|
text_cfg: CLIPTextCfg, |
|
quick_gelu: bool = False, |
|
text_encoder_name = None, |
|
): |
|
super().__init__() |
|
if isinstance(vision_cfg, dict): |
|
vision_cfg = CLIPVisionCfg(**vision_cfg) |
|
if isinstance(text_cfg, dict): |
|
text_cfg = CLIPTextCfg(**text_cfg) |
|
|
|
self.context_length = text_cfg.context_length |
|
|
|
|
|
|
|
act_layer = QuickGELU if quick_gelu else nn.GELU |
|
|
|
if vision_cfg.timm_model_name: |
|
self.visual = TimmModel( |
|
vision_cfg.timm_model_name, |
|
pretrained=vision_cfg.timm_model_pretrained, |
|
pool=vision_cfg.timm_pool, |
|
proj=vision_cfg.timm_proj, |
|
embed_dim=embed_dim, |
|
image_size=vision_cfg.image_size |
|
) |
|
act_layer = nn.GELU |
|
elif isinstance(vision_cfg.layers, (tuple, list)): |
|
vision_heads = vision_cfg.width * 32 // vision_cfg.head_width |
|
self.visual = ModifiedResNet( |
|
layers=vision_cfg.layers, |
|
output_dim=embed_dim, |
|
heads=vision_heads, |
|
image_size=vision_cfg.image_size, |
|
width=vision_cfg.width |
|
) |
|
else: |
|
vision_heads = vision_cfg.width // vision_cfg.head_width |
|
self.visual = VisualTransformer( |
|
image_size=vision_cfg.image_size, |
|
patch_size=vision_cfg.patch_size, |
|
width=vision_cfg.width, |
|
layers=vision_cfg.layers, |
|
heads=vision_heads, |
|
mlp_ratio=vision_cfg.mlp_ratio, |
|
output_dim=embed_dim, |
|
act_layer=act_layer, |
|
) |
|
|
|
self.text_encoder = HFTextEncoder( |
|
text_encoder_name, |
|
output_dim=embed_dim, |
|
proj_type='mlp', |
|
pooler_type='cls_last_hidden_state_pooler', |
|
pretrained=True, |
|
output_tokens=False, |
|
) |
|
|
|
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) |
|
|
|
self.init_parameters() |
|
|
|
def init_parameters(self): |
|
|
|
|
|
nn.init.constant_(self.logit_scale, np.log(1 / 0.07)) |
|
|
|
if hasattr(self.visual, 'init_parameters'): |
|
self.visual.init_parameters() |
|
|
|
|
|
def build_attention_mask(self): |
|
|
|
|
|
mask = torch.empty(self.context_length, self.context_length) |
|
mask.fill_(float("-inf")) |
|
mask.triu_(1) |
|
return mask |
|
|
|
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False): |
|
|
|
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.visual.set_grad_checkpointing(enable) |
|
self.text_encoder.grad_checkpointing = enable |
|
|
|
def encode_image(self, image): |
|
return self.visual(image) |
|
|
|
|
|
def encode_text(self, text): |
|
text_features = self.text_encoder(text) |
|
return text_features |
|
|
|
def forward(self, image, text, clamp_logit_scale_to=None): |
|
if image is not None: |
|
image_features = self.encode_image(image) |
|
image_features = F.normalize(image_features, dim=-1) |
|
else: |
|
image_features = None |
|
if text is not None: |
|
|
|
text_features = self.text_encoder(text) |
|
text_features = F.normalize(text_features, dim=-1) |
|
else: |
|
text_features = None |
|
if clamp_logit_scale_to is not None: |
|
with torch.no_grad(): |
|
self.logit_scale.data.clamp_(0, clamp_logit_scale_to) |
|
return image_features, text_features, self.logit_scale.exp() |
|
|
|
|
|
def convert_weights_to_fp16(model: nn.Module): |
|
"""Convert applicable model parameters to fp16""" |
|
|
|
def _convert_weights_to_fp16(l): |
|
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): |
|
l.weight.data = l.weight.data.half() |
|
if l.bias is not None: |
|
l.bias.data = l.bias.data.half() |
|
|
|
if isinstance(l, nn.MultiheadAttention): |
|
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: |
|
tensor = getattr(l, attr) |
|
if tensor is not None: |
|
tensor.data = tensor.data.half() |
|
|
|
for name in ["text_projection", "proj"]: |
|
if hasattr(l, name): |
|
attr = getattr(l, name) |
|
if attr is not None: |
|
attr.data = attr.data.half() |
|
|
|
model.apply(_convert_weights_to_fp16) |
|
|
|
|
|
def build_model_from_openai_state_dict(state_dict: dict): |
|
vit = "visual.proj" in state_dict |
|
|
|
if vit: |
|
vision_width = state_dict["visual.conv1.weight"].shape[0] |
|
vision_layers = len( |
|
[k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) |
|
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] |
|
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) |
|
image_size = vision_patch_size * grid_size |
|
else: |
|
counts: list = [ |
|
len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] |
|
vision_layers = tuple(counts) |
|
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] |
|
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) |
|
vision_patch_size = None |
|
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] |
|
image_size = output_width * 32 |
|
|
|
embed_dim = state_dict["text_projection"].shape[1] |
|
context_length = state_dict["positional_embedding"].shape[0] |
|
vocab_size = state_dict["token_embedding.weight"].shape[0] |
|
transformer_width = state_dict["ln_final.weight"].shape[0] |
|
transformer_heads = transformer_width // 64 |
|
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) |
|
|
|
vision_cfg = CLIPVisionCfg( |
|
layers=vision_layers, |
|
width=vision_width, |
|
patch_size=vision_patch_size, |
|
image_size=image_size, |
|
) |
|
text_cfg = CLIPTextCfg( |
|
context_length=context_length, |
|
vocab_size=vocab_size, |
|
width=transformer_width, |
|
heads=transformer_heads, |
|
layers=transformer_layers |
|
) |
|
model = CLIP( |
|
embed_dim, |
|
vision_cfg=vision_cfg, |
|
text_cfg=text_cfg, |
|
quick_gelu=True, |
|
) |
|
|
|
for key in ["input_resolution", "context_length", "vocab_size"]: |
|
state_dict.pop(key, None) |
|
|
|
convert_weights_to_fp16(model) |
|
model.load_state_dict(state_dict) |
|
return model.eval() |
|
|
|
|
|
def trace_model(model, batch_size=256, device=torch.device('cpu')): |
|
model.eval() |
|
image_size = model.visual.image_size |
|
example_images = torch.ones((batch_size, 3, image_size, image_size), device=device) |
|
example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device) |
|
model = torch.jit.trace_module( |
|
model, |
|
inputs=dict( |
|
forward=(example_images, example_text), |
|
encode_text=(example_text,), |
|
encode_image=(example_images,) |
|
)) |
|
model.visual.image_size = image_size |
|
return model |
|
|
|
|
|
def resize_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): |
|
|
|
old_pos_embed = state_dict.get('visual.positional_embedding', None) |
|
if old_pos_embed is None or not hasattr(model.visual, 'grid_size'): |
|
return |
|
grid_size = to_2tuple(model.visual.grid_size) |
|
extra_tokens = 1 |
|
new_seq_len = grid_size[0] * grid_size[1] + extra_tokens |
|
if new_seq_len == old_pos_embed.shape[0]: |
|
return |
|
|
|
if extra_tokens: |
|
pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:] |
|
else: |
|
pos_emb_tok, pos_emb_img = None, old_pos_embed |
|
old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img)))) |
|
|
|
logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size) |
|
pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2) |
|
pos_emb_img = F.interpolate( |
|
pos_emb_img, |
|
size=grid_size, |
|
mode=interpolation, |
|
align_corners=True, |
|
) |
|
pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0] |
|
if pos_emb_tok is not None: |
|
new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0) |
|
else: |
|
new_pos_embed = pos_emb_img |
|
state_dict['visual.positional_embedding'] = new_pos_embed |
|
|