|
|
|
|
|
import json |
|
import logging |
|
import os |
|
import pathlib |
|
import re |
|
from copy import deepcopy |
|
from pathlib import Path |
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
|
|
from . import model as model_zoo |
|
from .model import CLIP, convert_weights_to_fp16, resize_pos_embed |
|
from .openai import load_openai_model |
|
from .pretrained import get_pretrained_url, download_pretrained |
|
from .transform import image_transform |
|
|
|
|
|
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"] |
|
_MODEL_CONFIGS = {} |
|
|
|
|
|
def _natural_key(string_): |
|
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())] |
|
|
|
|
|
def _rescan_model_configs(): |
|
global _MODEL_CONFIGS |
|
|
|
config_ext = ('.json',) |
|
config_files = [] |
|
for config_path in _MODEL_CONFIG_PATHS: |
|
if config_path.is_file() and config_path.suffix in config_ext: |
|
config_files.append(config_path) |
|
elif config_path.is_dir(): |
|
for ext in config_ext: |
|
config_files.extend(config_path.glob(f'*{ext}')) |
|
|
|
for cf in config_files: |
|
with open(cf, 'r') as f: |
|
model_cfg = json.load(f) |
|
if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')): |
|
_MODEL_CONFIGS[cf.stem] = model_cfg |
|
|
|
_MODEL_CONFIGS = {k: v for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))} |
|
|
|
|
|
_rescan_model_configs() |
|
|
|
|
|
def load_state_dict(checkpoint_path: str, map_location='cpu'): |
|
checkpoint = torch.load(checkpoint_path, map_location=map_location) |
|
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: |
|
state_dict = checkpoint['state_dict'] |
|
else: |
|
state_dict = checkpoint |
|
if next(iter(state_dict.items()))[0].startswith('module'): |
|
state_dict = {k[7:]: v for k, v in state_dict.items()} |
|
return state_dict |
|
|
|
|
|
def load_checkpoint(model, checkpoint_path, strict=False): |
|
state_dict = load_state_dict(checkpoint_path) |
|
resize_pos_embed(state_dict, model) |
|
incompatible_keys = model.load_state_dict(state_dict, strict=strict) |
|
return incompatible_keys |
|
|
|
|
|
def create_model( |
|
model_name: str, |
|
pretrained: str = '', |
|
precision: str = 'fp32', |
|
device: torch.device = torch.device('cpu'), |
|
jit: bool = False, |
|
force_quick_gelu: bool = False, |
|
pretrained_image: bool = False, |
|
clip_model: str = "CLIP", |
|
text_encoder_name=None, |
|
): |
|
model_name = model_name.replace('/', '-') |
|
|
|
if pretrained.lower() == 'openai': |
|
logging.info(f'Loading pretrained {model_name} from OpenAI.') |
|
model = load_openai_model(model_name, device=device, jit=jit) |
|
|
|
if precision == "amp" or precision == "fp32": |
|
model = model.float() |
|
else: |
|
if model_name in _MODEL_CONFIGS: |
|
logging.info(f'Loading {model_name} model config.') |
|
model_cfg = deepcopy(_MODEL_CONFIGS[model_name]) |
|
else: |
|
logging.error(f'Model config for {model_name} not found; available models {list_models()}.') |
|
raise RuntimeError(f'Model config for {model_name} not found.') |
|
|
|
if force_quick_gelu: |
|
|
|
model_cfg["quick_gelu"] = True |
|
|
|
if pretrained_image: |
|
if 'timm_model_name' in model_cfg.get('vision_cfg', {}): |
|
|
|
model_cfg['vision_cfg']['timm_model_pretrained'] = True |
|
else: |
|
assert False, 'pretrained image towers currently only supported for timm models' |
|
model_cfg['text_encoder_name'] = text_encoder_name |
|
model_cls = getattr(model_zoo, clip_model) |
|
model = model_cls(**model_cfg) |
|
|
|
if pretrained: |
|
checkpoint_path = '' |
|
url = get_pretrained_url(model_name, pretrained) |
|
if url: |
|
checkpoint_path = download_pretrained(url) |
|
elif os.path.exists(pretrained): |
|
checkpoint_path = pretrained |
|
|
|
if checkpoint_path: |
|
logging.info(f'Loading pretrained {model_name} weights ({pretrained}).') |
|
msg = load_checkpoint(model, checkpoint_path) |
|
logging.info(f'{msg}') |
|
else: |
|
logging.warning(f'Pretrained weights ({pretrained}) not found for model {model_name}.') |
|
raise RuntimeError(f'Pretrained weights ({pretrained}) not found for model {model_name}.') |
|
|
|
model.to(device=device) |
|
if precision == "fp16": |
|
assert device.type != 'cpu' |
|
convert_weights_to_fp16(model) |
|
|
|
if jit: |
|
model = torch.jit.script(model) |
|
|
|
return model |
|
|
|
|
|
def create_model_and_transforms( |
|
model_name: str, |
|
pretrained: str = '', |
|
precision: str = 'fp32', |
|
device: torch.device = torch.device('cpu'), |
|
jit: bool = False, |
|
force_quick_gelu: bool = False, |
|
pretrained_image: bool = False, |
|
mean: Optional[Tuple[float, ...]] = None, |
|
std: Optional[Tuple[float, ...]] = None, |
|
inmem = False, |
|
clip_model: str = "CLIP", |
|
text_encoder_name=None, |
|
): |
|
model = create_model( |
|
model_name, pretrained, precision, device, jit, |
|
force_quick_gelu=force_quick_gelu, |
|
pretrained_image=pretrained_image, |
|
clip_model=clip_model, |
|
text_encoder_name=text_encoder_name, |
|
) |
|
preprocess_train = image_transform(model.visual.image_size, is_train=True, mean=mean, std=std, inmem=inmem) |
|
preprocess_val = image_transform(model.visual.image_size, is_train=False, mean=mean, std=std) |
|
return model, preprocess_train, preprocess_val |
|
|
|
|
|
def list_models(): |
|
""" enumerate available model architectures based on config files """ |
|
return list(_MODEL_CONFIGS.keys()) |
|
|
|
|
|
def add_model_config(path): |
|
""" add model config path or file and update registry """ |
|
if not isinstance(path, Path): |
|
path = Path(path) |
|
_MODEL_CONFIG_PATHS.append(path) |
|
_rescan_model_configs() |
|
|