muzairkhattak
first commit for the demo
37b3db0
raw
history blame
7.46 kB
import gradio as gr
# Switch path to root of project
import os
import sys
# Get the current working directory
current_dir = os.getcwd()
src_path = os.path.join(current_dir, 'src')
os.chdir(src_path)
# Add src directory to sys.path
sys.path.append(src_path)
from open_clip import create_model_and_transforms
from huggingface_hub import hf_hub_download
from open_clip import HFTokenizer
import torch
class create_unimed_clip_model:
def __init__(self, model_name):
# self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.device = 'cpu'
mean = (0.48145466, 0.4578275, 0.40821073) # OpenAI dataset mean
std = (0.26862954, 0.26130258, 0.27577711) # OpenAI dataset std
if model_name == "ViT/B-16":
# Download the weights
weights_path = hf_hub_download(
repo_id="UzairK/unimed-clip-vit-b16",
filename="unimed-clip-vit-b16.pt"
)
self.pretrained = weights_path # Path to pretrained weights
self.text_encoder_name = "microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract"
self.model_name = "ViT-B-16-quickgelu"
elif model_name == 'ViT/L-14@336px-base-text':
# Download the weights
self.model_name = "ViT-L-14-336-quickgelu"
weights_path = hf_hub_download(
repo_id="UzairK/unimed_clip_vit_l14_base_text_encoder",
filename="unimed_clip_vit_l14_base_text_encoder.pt"
)
self.pretrained = weights_path # Path to pretrained weights
self.text_encoder_name = "microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract"
self.tokenizer = HFTokenizer(
self.text_encoder_name,
context_length=256,
**{},
)
self.model, _, self.processor = create_model_and_transforms(
self.model_name,
self.pretrained,
precision='amp',
device=self.device,
force_quick_gelu=True,
pretrained_image=False,
mean=mean, std=std,
inmem=True,
text_encoder_name=self.text_encoder_name,
)
def __call__(self, input_image, candidate_labels, hypothesis_template):
# Preprocess input
input_image = self.processor(input_image).unsqueeze(0).to(self.device)
if hypothesis_template == "":
texts = [
self.tokenizer(cls_text).to(self.device)
for cls_text in candidate_labels
]
else:
texts = [
self.tokenizer(hypothesis_template + " " + cls_text).to(self.device)
for cls_text in candidate_labels
]
texts = torch.cat(texts, dim=0)
# Perform inference
with torch.no_grad():
text_features = self.model.encode_text(texts)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
image_features = self.model.encode_image(input_image)
logits = (image_features @ text_features.t()).softmax(dim=-1).cpu().numpy()
return {cls_text: float(score) for cls_text, score in zip(candidate_labels, logits[0])}
pipes = {
"ViT/B-16": create_unimed_clip_model(model_name="ViT/B-16"),
"ViT/L-14@336px-base-text": create_unimed_clip_model(model_name='ViT/L-14@336px-base-text'),
}
# Define Gradio inputs and outputs
inputs = [
gr.Image(type="pil", label="Image"),
gr.Textbox(label="Candidate Labels (comma-separated)"),
gr.Radio(
choices=["ViT/B-16", "ViT/L-14@336px-base-text"],
label="Model",
value="ViT/B-16",
),
gr.Textbox(label="Prompt Template", placeholder="Optional prompt template as prefix",
value=""),
]
outputs = gr.Label(label="Predicted Scores")
def shot(image, labels_text, model_name, hypothesis_template):
labels = [label.strip(" ") for label in labels_text.strip(" ").split(",")]
res = pipes[model_name](input_image=image,
candidate_labels=labels,
hypothesis_template=hypothesis_template)
return {single_key: res[single_key] for single_key in res.keys()}
# Define examples
examples = [
["../docs/sample_images/brain_MRI.jpg", "CT scan image displaying the anatomical structure of the right kidney., pneumonia is indicated in this chest X-ray image., this is a MRI photo of a brain., this fundus image shows optic nerve damage due to glaucoma., a histopathology slide showing Tumor, Cardiomegaly is evident in the X-ray image of the chest.", "ViT/B-16", ""],
["../docs/sample_images/ct_scan_right_kidney.jpg",
"CT scan image displaying the anatomical structure of the right kidney., pneumonia is indicated in this chest X-ray image., this is a MRI photo of a brain., this fundus image shows optic nerve damage due to glaucoma., a histopathology slide showing Tumor, Cardiomegaly is evident in the X-ray image of the chest.",
"ViT/B-16", ""],
["../docs/sample_images/retina_glaucoma.jpg",
"CT scan image displaying the anatomical structure of the right kidney., pneumonia is indicated in this chest X-ray image., this is a MRI photo of a brain., this fundus image shows optic nerve damage due to glaucoma., a histopathology slide showing Tumor, Cardiomegaly is evident in the X-ray image of the chest.",
"ViT/B-16", ""],
["../docs/sample_images/tumor_histo_pathology.jpg",
"CT scan image displaying the anatomical structure of the right kidney., pneumonia is indicated in this chest X-ray image., this is a MRI photo of a brain., this fundus image shows optic nerve damage due to glaucoma., a histopathology slide showing Tumor, Cardiomegaly is evident in the X-ray image of the chest.",
"ViT/B-16", ""],
["../docs/sample_images/xray_cardiomegaly.jpg",
"CT scan image displaying the anatomical structure of the right kidney., pneumonia is indicated in this chest X-ray image., this is a MRI photo of a brain., this fundus image shows optic nerve damage due to glaucoma., a histopathology slide showing Tumor, Cardiomegaly is evident in the X-ray image of the chest.",
"ViT/B-16", ""],
["../docs/sample_images//xray_pneumonia.png",
"CT scan image displaying the anatomical structure of the right kidney., pneumonia is indicated in this chest X-ray image., this is a MRI photo of a brain., this fundus image shows optic nerve damage due to glaucoma., a histopathology slide showing Tumor, Cardiomegaly is evident in the X-ray image of the chest.",
"ViT/B-16", ""],
]
iface = gr.Interface(shot,
inputs,
outputs,
examples=examples,
description="""<p>Demo for UniMed CLIP, a family of strong Medical Contrastive VLMs trained on UniMed-dataset. For more information about our project, refer to our paper and github repository. <br>
Paper: <a href='https://arxiv.org/abs/2412.10372'>https://arxiv.org/abs/2412.10372</a> <br>
Github: <a href='https://github.com/mbzuai-oryx/UniMed-CLIP'>https://github.com/mbzuai-oryx/UniMed-CLIP</a> <br><br>
<b>[DEMO USAGE]</b> To begin with the demo, provide a picture (either upload manually, or select from the given examples) and class labels. Optionally you can also add template as an prefix to the class labels. <br> </p>""",
title="Zero-shot Medical Image Classification with UniMed-CLIP")
iface.launch()