muzairkhattak
first commit for the demo
37b3db0
raw
history blame
4.94 kB
# Copyright (c) Meta Platforms, Inc. and affiliates
# usage:
# torchrun --nproc_per_node=4 src/training/main.py b16_400m my-experiment-name <path-to-metaclip-pretrained-checkpoint>
from dataclasses import dataclass
from configs import Config
@dataclass
class b32_400m(Config):
inmem=True
engine="train_one_epoch_ex"
eval_steps=5000
save_frequency=1
# First prepare UniMed-Dataset using instructions in the docs/PREPARE-UniMed-DATA.md and then,
# provide paths for each sub-part of UniMed dataset below.
train_data="/<dataset-path>/radimagenet_webdataset/dataset-{000001..001049}.tar::/<dataset-path>/chexpert_webdataset/dataset-{000001..000212}.tar::/<dataset-path>/openi_webdataset/dataset-{000001..000007}.tar::/<dataset-path>/chest_xray8_webdataset/dataset-{000001..000113}.tar::/<dataset-path>/mimic_cxr/dataset-{000001..000270}.tar::/<dataset-path>/roco_webdataset/dataset-{000001..000061}.tar::/<dataset-path>/pmc_clip_webdataset/dataset-{000001..001645}.tar::/<dataset-path>/llava_med_alignment_set_webdataset/dataset-{000001..000468}.tar::/<dataset-path>/llava_med_hq_60k_set_webdataset/dataset-{000001..000265}.tar::/<dataset-path>/quilt_webdataset/dataset-{000001..001018}.tar::/<dataset-path>/retina_part1_webdataset/dataset-{000001..000155}.tar::/<dataset-path>/retina_part2_webdataset/dataset-{000001..000013}.tar::/<dataset-path>/retina_part3_webdataset/dataset-{000001..000006}.tar"
# train_num_samples = 1049000 (radimagenet) + 212000 (chexpert) + 7000 (openi) + 113000 (chest-xray8) + 270000 (mimic-cxr) + 61000 (rocov2) + 1645000 (pmc-clip) + 468000 (llavamed-alignment) + 265000 (llava-medhq) + 1018000 (quilt) + 155000 (retina part 1) + 13000 (retina part 2) + 6000 (retina part 3)
# Total training samples must equal total dataset size
train_num_samples = 5282000
# By default, we provide equal weightage to all dataset parts
train_data_upsampling_factors = "1::1::1::1::1::1::1::1::1::1::1::1"
# ----------------------------------------
workers=8
batch_size=128
epochs= 10
eval_freq = 1
model="ViT-B-32-quickgelu"
name="ViT-B-32"
force_quick_gelu=True
warmup=2000
seed=0
local_loss=True
gather_with_grad=True
nodes=16
ngpus=4
imagenet_val = None
report_to = 'wandb'
tokenizer_context_length = 256
text_encode_model_name = 'microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract'
@dataclass
class b32_400m_eval(Config):
inmem=True
engine="train_one_epoch_ex"
eval_steps=5000
save_frequency=1
train_data=""
workers=8
eval_freq = 1
train_num_samples=400000000
batch_size=512
epochs=10
model="ViT-B-32-quickgelu"
name="ViT-B-32"
force_quick_gelu=True
warmup=2000
seed=0
local_loss=True
gather_with_grad=True
nodes=16
ngpus=4
imagenet_val = None
pretrained = '<path-to-metaclip-pretrained-weights-file>/b16_400m.pt'
text_encode_model_name = 'microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract'
tokenizer_context_length = 256
@dataclass
class b16_400m(b32_400m):
model="ViT-B-16-quickgelu"
name="ViT-B-16"
grad_checkpointing=True
# Change below
pretrained = '<path-to-metaclip-pretrained-weights-file>/b16_400m.pt'
text_encode_model_name = 'microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract'
@dataclass
class b16_400m_eval(b32_400m_eval):
model="ViT-B-16-quickgelu"
name="ViT-B-16"
grad_checkpointing=True
pretrained = '<path-to-metaclip-pretrained-weights-file>/b16_400m.pt'
text_encoder_model_name = 'microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract'
@dataclass
class l14_400m(b32_400m):
model="ViT-L-14-336-quickgelu"
name="ViT-L-14"
lr=0.0004
grad_checkpointing=True
batch_size=128
nodes=16
ngpus=8
text_encoder_model_name = 'microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract'
@dataclass
class l14_400m_eval(b32_400m_eval):
model="ViT-L-14-336-quickgelu"
name="ViT-L-14"
lr=0.0004
grad_checkpointing=True
batch_size=256
nodes=16
ngpus=8
text_encoder_model_name = 'microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract'
@dataclass
class l14_400m_base_text_encoder(b32_400m):
model="ViT-L-14-336-quickgelu"
name="ViT-L-14"
lr=0.0004
grad_checkpointing=True
batch_size=128
nodes=16
ngpus=8
text_encoder_model_name = 'microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract'
@dataclass
class l14_400m_base_text_encoder_eval(b32_400m_eval):
model="ViT-L-14-336-quickgelu"
name="ViT-L-14"
lr=0.0004
grad_checkpointing=True
batch_size=256
nodes=16
ngpus=8
text_encode_model_name = 'microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract'
if __name__ == "__main__":
import inspect
import sys
for name, obj in inspect.getmembers(sys.modules[__name__]):
if inspect.isfunction(obj):
print(name)