File size: 20,828 Bytes
37b3db0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
# Copyright (c) Meta Platforms, Inc. and affiliates
import json
import logging
import math
import os
import time
from contextlib import suppress
import numpy as np
import torch
import torch.nn.functional as F
import collections
from collections import defaultdict
try:
import wandb
except ImportError:
wandb = None
from open_clip import ClipLoss, get_mean_std
from .distributed import is_master, world_info_from_env
from .zero_shot import zero_shot_eval
def save_checkpoint(model, optimizer, scaler, epoch, i, args):
checkpoint_dict = {
"epoch": epoch,
"epoch_step": i, # inner loop saves step and args.resume in main.py will decide if a checkpoint is saved by innerloop or epoch loop (in main).
"name": args.name,
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
}
if scaler is not None:
checkpoint_dict["scaler"] = scaler.state_dict()
# Saving checkpoints. use eval_steps to save a checkpoint.
if args.save_logs: # master_only.
# epoch saving is removed. only save `epoch_latest.pt`.
if args.save_most_recent:
torch.save(
checkpoint_dict,
os.path.join(args.checkpoint_path, f"epoch_latest.pt"),
)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def unwrap_model(model):
if hasattr(model, 'module'):
return model.module
else:
return model
def to_device(batch, device, args):
images, texts = batch
images = images.to(device=device, non_blocking=True)
if hasattr(args, "inmem") and args.inmem:
images = images.to(torch.float32).div_(255.) # b, 3, 224, 224
mean, std = get_mean_std(args)
mean = torch.as_tensor(mean, device=images.device)[None, :, None, None]
std = torch.as_tensor(std, device=images.device)[None, :, None, None]
images.sub_(mean).div_(std)
texts = texts.to(device=device, non_blocking=True)
return images, texts
def train_one_epoch_ex(model, data, epoch, epoch_step, optimizer, scaler, scheduler, args, tb_writer=None):
device = torch.device(args.device)
autocast = torch.cuda.amp.autocast if args.precision == 'amp' else suppress
model.train()
from open_clip import loss
if hasattr(args, "loss"):
loss_cls = getattr(loss, args.loss)
else:
loss_cls = getattr(loss, "ClipLoss")
loss = loss_cls(
local_loss=args.local_loss,
gather_with_grad=args.gather_with_grad,
cache_labels=True,
rank=args.rank,
world_size=args.world_size,
use_horovod=args.horovod)
data['train'].set_epoch(epoch) # set epoch in process safe manner via sampler or shared_epoch
dataloader = data['train'].dataloader
num_batches_per_epoch = dataloader.num_batches
sample_digits = math.ceil(math.log(dataloader.num_samples + 1, 10))
loss_m = AverageMeter()
batch_time_m = AverageMeter()
data_time_m = AverageMeter()
end = time.time()
if hasattr(args, "one_iter") and args.one_iter is True:
# hack for big dataset using one iterator to run across 400M epoch.
if not hasattr(data['train'], "dataloader_iter"):
print(f"running dataloader across epochs ({args.train_num_samples} examples per epoch).")
data['train'].dataloader_iter = iter(dataloader)
batch_iter = data['train'].dataloader_iter
else:
batch_iter = iter(dataloader)
for i in range(num_batches_per_epoch):
if i < epoch_step: # skip to the right i when resuming happens.
continue
batch = next(batch_iter)
step = num_batches_per_epoch * epoch + i
scheduler(step)
images, texts = to_device(batch, device, args)
data_time_m.update(time.time() - end)
optimizer.zero_grad()
with autocast():
image_features, text_features, logit_scale = model(images, texts)
total_loss = loss(image_features, text_features, logit_scale)
if torch.isfinite(total_loss).all():
if scaler is not None:
scaler.scale(total_loss).backward()
if args.horovod:
optimizer.synchronize()
scaler.unscale_(optimizer)
if args.norm_gradient_clip is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.norm_gradient_clip, norm_type=2.0)
with optimizer.skip_synchronize():
scaler.step(optimizer)
else:
if args.norm_gradient_clip is not None:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.norm_gradient_clip, norm_type=2.0)
scaler.step(optimizer)
scaler.update()
else:
total_loss.backward()
if args.norm_gradient_clip is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.norm_gradient_clip, norm_type=2.0)
optimizer.step()
# Note: we clamp to 4.6052 = ln(100), as in the original paper.
with torch.no_grad():
unwrap_model(model).logit_scale.clamp_(0, math.log(100))
else:
logging.warn(f"Loss is {total_loss}, skip back prop.")
import sys
sys.exit(1) # protect the checkpoint for debugging.
batch_time_m.update(time.time() - end)
end = time.time()
batch_count = i + 1
if is_master(args) and (i % 100 == 0 or batch_count == num_batches_per_epoch):
batch_size = len(images)
num_samples = batch_count * batch_size * args.world_size
samples_per_epoch = dataloader.num_samples
percent_complete = 100.0 * batch_count / num_batches_per_epoch
# NOTE loss is coarsely sampled, just master node and per log update
loss_m.update(total_loss.item(), batch_size)
logit_scale_scalar = logit_scale.item()
logging.info(
f"Train Epoch: {epoch} [{num_samples:>{sample_digits}}/{samples_per_epoch} ({percent_complete:.0f}%)] "
f"Loss: {loss_m.val:#.5g} ({loss_m.avg:#.4g}) "
f"Data (t): {data_time_m.avg:.3f} "
f"Batch (t): {batch_time_m.avg:.3f}, {args.batch_size*args.world_size / batch_time_m.val:#g}/s "
f"LR: {optimizer.param_groups[0]['lr']:5f} "
f"Logit Scale: {logit_scale_scalar:.3f}"
)
# Save train loss / etc. Using non avg meter values as loggers have their own smoothing
log_data = {
"loss": loss_m.val,
"data_time": data_time_m.val,
"batch_time": batch_time_m.val,
"samples_per_scond": args.batch_size*args.world_size / batch_time_m.val,
"scale": logit_scale_scalar,
"lr": optimizer.param_groups[0]["lr"]
}
for name, val in log_data.items():
name = "train/" + name
if tb_writer is not None:
tb_writer.add_scalar(name, val, step)
if args.wandb:
assert wandb is not None, 'Please install wandb.'
wandb.log({name: val, 'step': step})
# resetting batch / data time meters per log window
batch_time_m.reset()
data_time_m.reset()
if hasattr(args, "save_steps") and (step + 1) % args.save_steps == 0:
save_checkpoint(model, optimizer, scaler, epoch, i, args)
# TODO: copied from main.py, wrap as a function call.
if hasattr(args, "eval_steps") and (step + 1) % args.eval_steps == 0: # TODO (huxu): put eval on master only?
if any(v in data for v in ('val', 'imagenet-val', 'imagenet-v2')):
evaluate_ex(model, data, step, args, tb_writer) # completed_epoch -> epoch, writer -> tb_writer
save_checkpoint(model, optimizer, scaler, epoch, i, args)
model.train() # evaluate won't turn model back to train."""
# end for
def train_one_epoch(model, data, epoch, optimizer, scaler, scheduler, args, tb_writer=None):
device = torch.device(args.device)
autocast = torch.cuda.amp.autocast if args.precision == 'amp' else suppress
model.train()
loss = ClipLoss(
local_loss=args.local_loss,
gather_with_grad=args.gather_with_grad,
cache_labels=True,
rank=args.rank,
world_size=args.world_size,
use_horovod=args.horovod)
data['train'].set_epoch(epoch) # set epoch in process safe manner via sampler or shared_epoch
dataloader = data['train'].dataloader
num_batches_per_epoch = dataloader.num_batches
sample_digits = math.ceil(math.log(dataloader.num_samples + 1, 10))
loss_m = AverageMeter()
batch_time_m = AverageMeter()
data_time_m = AverageMeter()
end = time.time()
for i, batch in enumerate(dataloader):
step = num_batches_per_epoch * epoch + i
scheduler(step)
images, texts = to_device(batch, device, args)
data_time_m.update(time.time() - end)
optimizer.zero_grad()
with autocast():
image_features, text_features, logit_scale = model(images, texts)
total_loss = loss(image_features, text_features, logit_scale)
if scaler is not None:
scaler.scale(total_loss).backward()
if args.horovod:
optimizer.synchronize()
scaler.unscale_(optimizer)
if args.norm_gradient_clip is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.norm_gradient_clip, norm_type=2.0)
with optimizer.skip_synchronize():
scaler.step(optimizer)
else:
if args.norm_gradient_clip is not None:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.norm_gradient_clip, norm_type=2.0)
scaler.step(optimizer)
scaler.update()
else:
total_loss.backward()
if args.norm_gradient_clip is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.norm_gradient_clip, norm_type=2.0)
optimizer.step()
# Note: we clamp to 4.6052 = ln(100), as in the original paper.
with torch.no_grad():
unwrap_model(model).logit_scale.clamp_(0, math.log(100))
batch_time_m.update(time.time() - end)
end = time.time()
batch_count = i + 1
if is_master(args) and (i % 100 == 0 or batch_count == num_batches_per_epoch):
batch_size = len(images)
num_samples = batch_count * batch_size * args.world_size
samples_per_epoch = dataloader.num_samples
percent_complete = 100.0 * batch_count / num_batches_per_epoch
# NOTE loss is coarsely sampled, just master node and per log update
loss_m.update(total_loss.item(), batch_size)
logit_scale_scalar = logit_scale.item()
logging.info(
f"Train Epoch: {epoch} [{num_samples:>{sample_digits}}/{samples_per_epoch} ({percent_complete:.0f}%)] "
f"Loss: {loss_m.val:#.5g} ({loss_m.avg:#.4g}) "
f"Data (t): {data_time_m.avg:.3f} "
f"Batch (t): {batch_time_m.avg:.3f}, {args.batch_size*args.world_size / batch_time_m.val:#g}/s "
f"LR: {optimizer.param_groups[0]['lr']:5f} "
f"Logit Scale: {logit_scale_scalar:.3f}"
)
# Save train loss / etc. Using non avg meter values as loggers have their own smoothing
log_data = {
"loss": loss_m.val,
"data_time": data_time_m.val,
"batch_time": batch_time_m.val,
"samples_per_scond": args.batch_size*args.world_size / batch_time_m.val,
"scale": logit_scale_scalar,
"lr": optimizer.param_groups[0]["lr"]
}
for name, val in log_data.items():
name = "train/" + name
if tb_writer is not None:
tb_writer.add_scalar(name, val, step)
if args.wandb:
assert wandb is not None, 'Please install wandb.'
wandb.log({name: val, 'step': step})
# resetting batch / data time meters per log window
batch_time_m.reset()
data_time_m.reset()
# end for
# huxu: used inside train_epoch.
def evaluate_ex(model, data, step, args, tb_writer=None):
metrics = {}
if not is_master(args):
return metrics
device = torch.device(args.device)
model.eval()
zero_shot_metrics = zero_shot_eval(model, data, 0, args) # huxu: epoch = 0 as a trick to bypass checking.
metrics.update(zero_shot_metrics)
autocast = torch.cuda.amp.autocast if args.precision == 'amp' else suppress
if 'val' in data: # and (args.val_frequency and ((epoch % args.val_frequency) == 0 or epoch == args.epochs)): # huxu: val anytime called.
dataloader = data['val'].dataloader
num_samples = 0
samples_per_val = dataloader.num_samples
# FIXME this does not scale past small eval datasets
# all_image_features @ all_text_features will blow up memory and compute very quickly
cumulative_loss = 0.0
all_image_features, all_text_features = [], []
with torch.no_grad():
for i, batch in enumerate(dataloader):
images, texts = to_device(batch, device, args)
with autocast():
image_features, text_features, logit_scale = model(images, texts)
# features are accumulated in CPU tensors, otherwise GPU memory exhausted quickly
# however, system RAM is easily exceeded and compute time becomes problematic
all_image_features.append(image_features.cpu())
all_text_features.append(text_features.cpu())
logit_scale = logit_scale.mean()
logits_per_image = logit_scale * image_features @ text_features.t()
logits_per_text = logits_per_image.t()
batch_size = images.shape[0]
labels = torch.arange(batch_size, device=device).long()
total_loss = (
F.cross_entropy(logits_per_image, labels) +
F.cross_entropy(logits_per_text, labels)
) / 2
cumulative_loss += total_loss * batch_size
num_samples += batch_size
if is_master(args) and (i % 100) == 0:
logging.info(
f"Eval Step: {step} [{num_samples} / {samples_per_val}]\t"
f"Loss: {cumulative_loss / num_samples:.6f}\t")
val_metrics = get_metrics(
image_features=torch.cat(all_image_features),
text_features=torch.cat(all_text_features),
logit_scale=logit_scale.cpu(),
)
loss = cumulative_loss / num_samples
metrics.update(
{**val_metrics, "val_loss": loss.item(), "step": step, "num_samples": num_samples}
)
if not metrics:
return metrics
logging.info(
f"Eval Step: {step} "
+ "\t".join([f"{k}: {round(v, 4):.4f}" for k, v in metrics.items()])
)
if args.save_logs:
for name, val in metrics.items():
if tb_writer is not None:
tb_writer.add_scalar(f"val_step/{name}", val, step)
with open(os.path.join(args.checkpoint_path, "results.jsonl"), "a+") as f:
f.write(json.dumps(metrics))
f.write("\n")
if args.wandb:
assert wandb is not None, 'Please install wandb.'
for name, val in metrics.items():
wandb.log({f"val_step/{name}": val, 'step': step})
return metrics
def evaluate(model, data, epoch, args, tb_writer=None):
metrics = {}
if not is_master(args):
return metrics
device = torch.device(args.device)
model.eval()
zero_shot_metrics = zero_shot_eval(model, data, epoch, args)
metrics.update(zero_shot_metrics)
autocast = torch.cuda.amp.autocast if args.precision == 'amp' else suppress
if 'val' in data and (args.val_frequency and ((epoch % args.val_frequency) == 0 or epoch == args.epochs)):
dataloader = data['val'].dataloader
num_samples = 0
samples_per_val = dataloader.num_samples
# FIXME this does not scale past small eval datasets
# all_image_features @ all_text_features will blow up memory and compute very quickly
cumulative_loss = 0.0
all_image_features, all_text_features = [], []
with torch.no_grad():
for i, batch in enumerate(dataloader):
images, texts = to_device(batch, device, args)
with autocast():
image_features, text_features, logit_scale = model(images, texts)
# features are accumulated in CPU tensors, otherwise GPU memory exhausted quickly
# however, system RAM is easily exceeded and compute time becomes problematic
all_image_features.append(image_features.cpu())
all_text_features.append(text_features.cpu())
logit_scale = logit_scale.mean()
logits_per_image = logit_scale * image_features @ text_features.t()
logits_per_text = logits_per_image.t()
batch_size = images.shape[0]
labels = torch.arange(batch_size, device=device).long()
total_loss = (
F.cross_entropy(logits_per_image, labels) +
F.cross_entropy(logits_per_text, labels)
) / 2
cumulative_loss += total_loss * batch_size
num_samples += batch_size
if is_master(args) and (i % 100) == 0:
logging.info(
f"Eval Epoch: {epoch} [{num_samples} / {samples_per_val}]\t"
f"Loss: {cumulative_loss / num_samples:.6f}\t")
val_metrics = get_metrics(
image_features=torch.cat(all_image_features),
text_features=torch.cat(all_text_features),
logit_scale=logit_scale.cpu(),
)
loss = cumulative_loss / num_samples
metrics.update(
{**val_metrics, "val_loss": loss.item(), "epoch": epoch, "num_samples": num_samples}
)
if not metrics:
return metrics
logging.info(
f"Eval Epoch: {epoch} "
+ "\t".join([f"{k}: {round(v, 4):.4f}" for k, v in metrics.items()])
)
if args.save_logs:
for name, val in metrics.items():
if tb_writer is not None:
tb_writer.add_scalar(f"val/{name}", val, epoch)
with open(os.path.join(args.checkpoint_path, "results.jsonl"), "a+") as f:
f.write(json.dumps(metrics))
f.write("\n")
if args.wandb:
assert wandb is not None, 'Please install wandb.'
for name, val in metrics.items():
wandb.log({f"val/{name}": val, 'epoch': epoch})
return metrics
def get_metrics(image_features, text_features, logit_scale):
metrics = {}
logits_per_image = (logit_scale * image_features @ text_features.t()).detach().cpu()
logits_per_text = logits_per_image.t().detach().cpu()
logits = {"image_to_text": logits_per_image, "text_to_image": logits_per_text}
ground_truth = torch.arange(len(text_features)).view(-1, 1)
for name, logit in logits.items():
ranking = torch.argsort(logit, descending=True)
preds = torch.where(ranking == ground_truth)[1]
preds = preds.detach().cpu().numpy()
metrics[f"{name}_mean_rank"] = preds.mean() + 1
metrics[f"{name}_median_rank"] = np.floor(np.median(preds)) + 1
for k in [1, 5, 10]:
metrics[f"{name}_R@{k}"] = np.mean(preds < k)
return metrics
|