File size: 10,907 Bytes
37b3db0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
# Copyright (c) Meta Platforms, Inc. and affiliates
import hashlib
import os
import urllib
import warnings
from tqdm import tqdm
_RN50 = dict(
openai="https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-yfcc15m-455df137.pt",
cc12m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-cc12m-f000538c.pt"
)
_RN50_quickgelu = dict(
openai="https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-yfcc15m-455df137.pt",
cc12m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-cc12m-f000538c.pt"
)
_RN101 = dict(
openai="https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn101-quickgelu-yfcc15m-3e04b30e.pt"
)
_RN101_quickgelu = dict(
openai="https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn101-quickgelu-yfcc15m-3e04b30e.pt"
)
_RN50x4 = dict(
openai="https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
)
_RN50x16 = dict(
openai="https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
)
_RN50x64 = dict(
openai="https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
)
_VITB32 = dict(
openai="https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
laion2b_e16="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-laion2b_e16-af8dbd0c.pth",
laion400m_e31="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt",
laion400m_e32="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt",
)
_VITB32_quickgelu = dict(
openai="https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
laion400m_e31="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt",
laion400m_e32="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt",
metaclip_400m=("https://dl.fbaipublicfiles.com/MMPT/metaclip/b32_400m.pt", "3c68642594a329afc1ec0fe489ee2b58ab19c9d0556ccf7c404a59baa0762d71"),
metaclip_2_5b=("https://dl.fbaipublicfiles.com/MMPT/metaclip/b32_fullcc2.5b.pt", "885b7ec11fe07a9826e2e6812d70e5011918e32fe9b12136b49d5dded92b4386"),
metaclip_fullcc=("https://dl.fbaipublicfiles.com/MMPT/metaclip/b32_fullcc2.5b.pt", "885b7ec11fe07a9826e2e6812d70e5011918e32fe9b12136b49d5dded92b4386"),
metaclip400m=("https://dl.fbaipublicfiles.com/MMPT/metaclip/b32_400m.pt", "3c68642594a329afc1ec0fe489ee2b58ab19c9d0556ccf7c404a59baa0762d71"),
metaclip2_5b=("https://dl.fbaipublicfiles.com/MMPT/metaclip/b32_fullcc2.5b.pt", "885b7ec11fe07a9826e2e6812d70e5011918e32fe9b12136b49d5dded92b4386"),
)
_VITB16 = dict(
openai="https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
laion400m_e31="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e31-00efa78f.pt",
laion400m_e32="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e32-55e67d44.pt",
)
_VITB16_quickgelu = dict(
metaclip_400m=("https://dl.fbaipublicfiles.com/MMPT/metaclip/b16_400m.pt", "68dfb5996c52a8f4fecb9bd16601e97e1895236645082778bd9cede8429a8d49"),
metaclip_2_5b=("https://dl.fbaipublicfiles.com/MMPT/metaclip/b16_fullcc2.5b.pt", "512ea0fb9f2cf88d027e96e4674247a1a91a96af18abc2e2fcdb8008c551e04b"),
metaclip_fullcc=("https://dl.fbaipublicfiles.com/MMPT/metaclip/b16_fullcc2.5b.pt", "512ea0fb9f2cf88d027e96e4674247a1a91a96af18abc2e2fcdb8008c551e04b"),
metaclip400m=("https://dl.fbaipublicfiles.com/MMPT/metaclip/b16_400m.pt", "68dfb5996c52a8f4fecb9bd16601e97e1895236645082778bd9cede8429a8d49"),
metaclip2_5b=("https://dl.fbaipublicfiles.com/MMPT/metaclip/b16_fullcc2.5b.pt", "512ea0fb9f2cf88d027e96e4674247a1a91a96af18abc2e2fcdb8008c551e04b"),
)
_VITB16_PLUS_240 = dict(
laion400m_e31="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e31-8fb26589.pt",
laion400m_e32="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e32-699c4b84.pt",
)
_VITL14 = dict(
openai="https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
laion400m_e31='https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e31-69988bb6.pt',
laion400m_e32='https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e32-3d133497.pt',
)
_VITL14_quickgelu = dict(
metaclip_400m=("https://dl.fbaipublicfiles.com/MMPT/metaclip/l14_400m.pt", "51c782959f920b030779e494517b8d545f56794df6b0a2796a4c310455a361be"),
metaclip_2_5b=("https://dl.fbaipublicfiles.com/MMPT/metaclip/l14_fullcc2.5b.pt", "ce24750710544ee288ef0abdead2016730da1893a1d07447bda3a75e1c148f97"),
metaclip_fullcc=("https://dl.fbaipublicfiles.com/MMPT/metaclip/l14_fullcc2.5b.pt", "ce24750710544ee288ef0abdead2016730da1893a1d07447bda3a75e1c148f97"),
metaclip400m=("https://dl.fbaipublicfiles.com/MMPT/metaclip/l14_400m.pt", "51c782959f920b030779e494517b8d545f56794df6b0a2796a4c310455a361be"),
metaclip2_5b=("https://dl.fbaipublicfiles.com/MMPT/metaclip/l14_fullcc2.5b.pt", "ce24750710544ee288ef0abdead2016730da1893a1d07447bda3a75e1c148f97"),
)
_VITL14_336 = dict(
openai="https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt"
)
_VITH14_quickgelu = dict(
metaclip2_5b=("https://dl.fbaipublicfiles.com/MMPT/metaclip/h14_fullcc2.5b.pt", "1286807d5cc8d9a0b12563b47474efb53b9522eb3d7eac5a9a5d39c3a776ad5c"),
metaclip_2_5b=("https://dl.fbaipublicfiles.com/MMPT/metaclip/h14_fullcc2.5b.pt", "1286807d5cc8d9a0b12563b47474efb53b9522eb3d7eac5a9a5d39c3a776ad5c"),
metaclip_fullcc=("https://dl.fbaipublicfiles.com/MMPT/metaclip/h14_fullcc2.5b.pt", "1286807d5cc8d9a0b12563b47474efb53b9522eb3d7eac5a9a5d39c3a776ad5c"),
)
_VITbigG14_quickgelu = dict(
metaclip2_5b=("https://dl.fbaipublicfiles.com/MMPT/metaclip/G14_fullcc2.5b.pt", "5fe2b83c7439e0caa2c855dec9a2eaa54f17f3ced288218564b640ca7953447f"),
metaclip_2_5b=("https://dl.fbaipublicfiles.com/MMPT/metaclip/G14_fullcc2.5b.pt", "5fe2b83c7439e0caa2c855dec9a2eaa54f17f3ced288218564b640ca7953447f"),
metaclip_fullcc=("https://dl.fbaipublicfiles.com/MMPT/metaclip/G14_fullcc2.5b.pt", "5fe2b83c7439e0caa2c855dec9a2eaa54f17f3ced288218564b640ca7953447f"),
)
_PRETRAINED = {
"RN50": _RN50,
"RN50-quickgelu": _RN50_quickgelu,
"RN101": _RN101,
"RN101-quickgelu": _RN101_quickgelu,
"RN50x4": _RN50x4,
"RN50x16": _RN50x16,
"RN50x64": _RN50x64,
"ViT-B-32": _VITB32,
"ViT-B-32-quickgelu": _VITB32_quickgelu,
"ViT-B-16": _VITB16,
"ViT-B-16-quickgelu": _VITB16_quickgelu,
"ViT-B-16-plus-240": _VITB16_PLUS_240,
"ViT-L-14": _VITL14,
"ViT-L-14-quickgelu": _VITL14_quickgelu,
"ViT-L-14-336": _VITL14_336,
"ViT-H-14-quickgelu": _VITH14_quickgelu,
"ViT-bigG-14-quickgelu": _VITbigG14_quickgelu,
}
def list_pretrained(as_str: bool = False):
""" returns list of pretrained models
Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True
"""
return [':'.join([k, t]) if as_str else (k, t) for k in _PRETRAINED.keys() for t in _PRETRAINED[k].keys()]
def list_pretrained_tag_models(tag: str):
""" return all models having the specified pretrain tag """
models = []
for k in _PRETRAINED.keys():
if tag in _PRETRAINED[k]:
models.append(k)
return models
def list_pretrained_model_tags(model: str):
""" return all pretrain tags for the specified model architecture """
tags = []
if model in _PRETRAINED:
tags.extend(_PRETRAINED[model].keys())
return tags
def get_pretrained_url(model: str, tag: str):
if model not in _PRETRAINED:
return ''
model_pretrained = _PRETRAINED[model]
tag = tag.lower()
if tag not in model_pretrained:
return ''
return model_pretrained[tag]
def download_pretrained(url: str, root: str = os.path.expanduser("~/.cache/clip")):
os.makedirs(root, exist_ok=True)
if 'openaipublic' in url:
expected_sha256 = url.split("/")[-2]
elif isinstance(url, tuple):
assert len(url) == 2, "url w/ sha256 hash must be in form (url, sha256) tuple."
expected_sha256 = url[1]
url = url[0]
else:
expected_sha256 = ''
filename = os.path.basename(url)
download_target = os.path.join(root, filename)
if os.path.exists(download_target) and not os.path.isfile(download_target):
raise RuntimeError(f"{download_target} exists and is not a regular file")
if os.path.isfile(download_target):
if expected_sha256:
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
return download_target
else:
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
else:
return download_target
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop:
while True:
buffer = source.read(8192)
if not buffer:
break
output.write(buffer)
loop.update(len(buffer))
if expected_sha256 and hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
return download_target |