File size: 4,097 Bytes
37b3db0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# Copyright (c) Meta Platforms, Inc. and affiliates

import os

import torch

try:
    import horovod.torch as hvd
except ImportError:
    hvd = None


def is_global_master(args):
    return args.rank == 0


def is_local_master(args):
    return args.local_rank == 0


def is_master(args, local=False):
    return is_local_master(args) if local else is_global_master(args)


def is_using_horovod():
    # NOTE w/ horovod run, OMPI vars should be set, but w/ SLURM PMI vars will be set
    # Differentiating between horovod and DDP use via SLURM may not be possible, so horovod arg still required...
    ompi_vars = ["OMPI_COMM_WORLD_RANK", "OMPI_COMM_WORLD_SIZE"]
    pmi_vars = ["PMI_RANK", "PMI_SIZE"]
    if all([var in os.environ for var in ompi_vars]) or all([var in os.environ for var in pmi_vars]):
        return True
    else:
        return False


def is_using_distributed():
    if 'WORLD_SIZE' in os.environ:
        return int(os.environ['WORLD_SIZE']) > 1
    if 'SLURM_NTASKS' in os.environ:
        return int(os.environ['SLURM_NTASKS']) > 1
    return False


def world_info_from_env():
    local_rank = 0
    for v in ('LOCAL_RANK', 'MPI_LOCALRANKID', 'SLURM_LOCALID', 'OMPI_COMM_WORLD_LOCAL_RANK'):
        if v in os.environ:
            local_rank = int(os.environ[v])
            break
    global_rank = 0
    for v in ('RANK', 'PMI_RANK', 'SLURM_PROCID', 'OMPI_COMM_WORLD_RANK'):
        if v in os.environ:
            global_rank = int(os.environ[v])
            break
    world_size = 1
    for v in ('WORLD_SIZE', 'PMI_SIZE', 'SLURM_NTASKS', 'OMPI_COMM_WORLD_SIZE'):
        if v in os.environ:
            world_size = int(os.environ[v])
            break

    return local_rank, global_rank, world_size


def init_distributed_device(args):
    # Distributed training = training on more than one GPU.
    # Works in both single and multi-node scenarios.
    args.distributed = False
    args.world_size = 1
    args.rank = 0  # global rank
    args.local_rank = 0
    if args.horovod:
        assert hvd is not None, "Horovod is not installed"
        hvd.init()
        args.local_rank = int(hvd.local_rank())
        args.rank = hvd.rank()
        args.world_size = hvd.size()
        args.distributed = True
        os.environ['LOCAL_RANK'] = str(args.local_rank)
        os.environ['RANK'] = str(args.rank)
        os.environ['WORLD_SIZE'] = str(args.world_size)
    elif is_using_distributed():
        if 'SLURM_PROCID' in os.environ:
            # DDP via SLURM
            args.local_rank, args.rank, args.world_size = world_info_from_env()
            # SLURM var -> torch.distributed vars in case needed
            os.environ['LOCAL_RANK'] = str(args.local_rank)
            os.environ['RANK'] = str(args.rank)
            os.environ['WORLD_SIZE'] = str(args.world_size)

            from datetime import timedelta
            timeout = timedelta(seconds=3600)     # default_pg_timeout is timedelta(seconds=1800)

            torch.distributed.init_process_group(
                backend=args.dist_backend,
                init_method=args.dist_url,
                world_size=args.world_size,
                rank=args.rank,
                timeout=timeout,
            )
        else:
            # DDP via torchrun, torch.distributed.launch
            args.local_rank, _, _ = world_info_from_env()
            torch.distributed.init_process_group(
                backend=args.dist_backend,
                init_method=args.dist_url)
            args.world_size = torch.distributed.get_world_size()
            args.rank = torch.distributed.get_rank()
        args.distributed = True

    if torch.cuda.is_available():
        if args.distributed and not args.no_set_device_rank:
            """# proposed to be consistent with AdaCLIP.
            device = args.rank % torch.cuda.device_count()
            """
            device = 'cuda:%d' % args.local_rank
        else:
            device = 'cuda:0'
        torch.cuda.set_device(device)
    else:
        device = 'cpu'
    args.device = device
    device = torch.device(device)
    return device