File size: 15,462 Bytes
37b3db0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
# Copyright (c) Meta Platforms, Inc. and affiliates
import sys
sys.path.append("src")
import logging
import os
import random
from datetime import datetime
from functools import partial
import numpy as np
import torch
from torch import optim
from torch.cuda.amp import GradScaler
try:
import wandb
except ImportError:
wandb = None
try:
import torch.utils.tensorboard as tensorboard
except ImportError:
tensorboard = None
try:
import horovod.torch as hvd
except ImportError:
hvd = None
from open_clip import create_model_and_transforms, trace_model, get_mean_std
from training.data import get_data
from training.distributed import is_master, init_distributed_device, world_info_from_env
from training.logger import setup_logging
from training.params import parse_args
from training.scheduler import cosine_lr
from training.train import train_one_epoch, evaluate
from training import train
def save_checkpoint(model, optimizer, scaler, completed_epoch, args):
checkpoint_dict = {
"epoch": completed_epoch,
"name": args.name,
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
}
if scaler is not None:
checkpoint_dict["scaler"] = scaler.state_dict()
if args.save_logs:
if completed_epoch == args.epochs or (
args.save_frequency > 0 and completed_epoch % args.save_frequency == 0
):
torch.save(
checkpoint_dict,
os.path.join(args.checkpoint_path, f"epoch_{completed_epoch}.pt"),
)
if args.save_most_recent:
torch.save(
checkpoint_dict,
os.path.join(args.checkpoint_path, f"epoch_latest.pt"),
)
def random_seed(seed=42, rank=0):
torch.manual_seed(seed + rank)
np.random.seed(seed + rank)
random.seed(seed + rank)
def main(args=None):
if args is None:
args = parse_args()
# sanitize model name for filesystem / uri use, easier if we don't use / in name as a rule?
args.model = args.model.replace('/', '-')
# get the name of the experiments
if args.name is None:
args.name = '-'.join([
datetime.now().strftime("%Y_%m_%d-%H_%M_%S"),
f"model_{args.model}",
f"lr_{args.lr}",
f"b_{args.batch_size}",
f"j_{args.workers}",
f"p_{args.precision}",
])
# discover initial world args early so we can log properly
args.distributed = False
args.local_rank, args.rank, args.world_size = world_info_from_env()
args.log_path = None
if is_master(args, local=args.log_local):
log_base_path = os.path.join(args.logs, args.name)
os.makedirs(log_base_path, exist_ok=True)
log_filename = f'out-{args.rank}' if args.log_local else 'out.log'
args.log_path = os.path.join(log_base_path, log_filename)
if os.path.exists(args.log_path) and args.resume is None and not hasattr(args, "eval"):
print(
"Error. Experiment already exists. Use --name {} to specify a new experiment."
)
return -1
# Set logger
args.log_level = logging.DEBUG if args.debug else logging.INFO
setup_logging(args.log_path, args.log_level)
# fully initialize distributed device environment
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
device = init_distributed_device(args)
args.wandb = 'wandb' in args.report_to or 'all' in args.report_to
args.tensorboard = 'tensorboard' in args.report_to or 'all' in args.report_to
if is_master(args):
args.tensorboard_path = os.path.join(args.logs, args.name, "tensorboard") if args.tensorboard else ''
args.checkpoint_path = os.path.join(args.logs, args.name, "checkpoints")
for dirname in [args.tensorboard_path, args.checkpoint_path]:
if dirname:
os.makedirs(dirname, exist_ok=True)
else:
args.tensorboard_path = ''
args.checkpoint_path = ''
if args.copy_codebase:
copy_codebase(args)
assert args.precision in ['amp', 'fp16', 'fp32']
if args.precision == 'fp16':
logging.warning(
'It is recommended to use AMP mixed-precision instead of FP16. '
'FP16 support needs further verification and tuning, especially for train.')
if args.horovod:
logging.info(
f'Running in horovod mode with multiple processes / nodes. Device: {args.device}.'
f'Process (global: {args.rank}, local {args.local_rank}), total {args.world_size}.')
elif args.distributed:
logging.info(
f'Running in distributed mode with multiple processes. Device: {args.device}.'
f'Process (global: {args.rank}, local {args.local_rank}), total {args.world_size}.')
else:
logging.info(f'Running with a single process. Device {args.device}.')
random_seed(args.seed, 0)
mean, std = get_mean_std(args)
model, preprocess_train, preprocess_val = create_model_and_transforms(
args.model,
args.pretrained,
precision=args.precision,
device=device,
jit=args.torchscript,
force_quick_gelu=args.force_quick_gelu,
pretrained_image=args.pretrained_image,
mean=mean, std=std,
inmem=hasattr(args, "inmem"),
clip_model=args.clip_model,
text_encoder_name=args.text_encoder_model_name,
)
random_seed(args.seed, args.rank)
if args.trace:
model = trace_model(model, batch_size=args.batch_size, device=device)
if args.lock_image:
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
model.lock_image_tower(
unlocked_groups=args.lock_image_unlocked_groups,
freeze_bn_stats=args.lock_image_freeze_bn_stats)
if args.grad_checkpointing:
model.set_grad_checkpointing()
if is_master(args):
logging.info("Model:")
logging.info(f"{str(model)}")
logging.info("Params:")
params_file = os.path.join(args.logs, args.name, "params.txt")
with open(params_file, "w") as f:
for name in sorted(vars(args)):
val = getattr(args, name)
logging.info(f" {name}: {val}")
f.write(f"{name}: {val}\n")
if args.distributed and not args.horovod:
if args.use_bn_sync:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
if args.distributed_engine == 'ddp':
ddp_args = {}
if args.ddp_static_graph:
# this doesn't exist in older PyTorch, arg only added if enabled
ddp_args['static_graph'] = True
# ddp_args['find_unused_parameters'] = True if "Alt" in args.clip_model or "Dot" in args.clip_model else False # huxu
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[device], **ddp_args)
else:
print("--distrubted_engine should be either 'ddp'")
sys.exit(1)
# create optimizer and scaler
optimizer = None
scaler = None
if args.train_data:
assert not args.trace, 'Cannot train with traced model'
exclude = lambda n, p: p.ndim < 2 or "bn" in n or "ln" in n or "bias" in n or 'logit_scale' in n
include = lambda n, p: not exclude(n, p)
named_parameters = list(model.named_parameters())
gain_or_bias_params = [p for n, p in named_parameters if exclude(n, p) and p.requires_grad]
rest_params = [p for n, p in named_parameters if include(n, p) and p.requires_grad]
optimizer = optim.AdamW(
[
{"params": gain_or_bias_params, "weight_decay": 0.},
{"params": rest_params, "weight_decay": args.wd},
],
lr=args.lr,
betas=(args.beta1, args.beta2),
eps=args.eps,
)
if args.horovod:
optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters())
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(optimizer, root_rank=0)
if args.precision == "amp":
scaler = GradScaler()
else:
scaler = None
# optionally resume from a checkpoint
start_epoch = 0
start_epoch_step = 0
if args.resume is not None:
if os.path.isfile(args.resume):
checkpoint = torch.load(args.resume, map_location='cpu')
if 'epoch' in checkpoint:
# resuming a train checkpoint w/ epoch and optimizer state
start_epoch = checkpoint["epoch"]
sd = checkpoint["state_dict"]
if next(iter(sd.items()))[0].startswith('_orig_mod'):
sd = {k[len('_orig_mod.'):]: v for k, v in sd.items()}
if not args.distributed and next(iter(sd.items()))[0].startswith('module'):
sd = {k[len('module.'):]: v for k, v in sd.items()}
model.load_state_dict(sd)
if optimizer is not None:
optimizer.load_state_dict(checkpoint["optimizer"])
if scaler is not None and 'scaler' in checkpoint:
scaler.load_state_dict(checkpoint['scaler'])
if 'epoch_step' in checkpoint: # resuming a train checkpoint w/ epoch and optimizer state
start_epoch_step = checkpoint["epoch_step"] + 1
logging.info(f"=> resuming checkpoint '{args.resume}' (epoch {start_epoch}, step {start_epoch_step})")
else:
start_epoch_step = 0
logging.info(f"=> resuming checkpoint '{args.resume}' (epoch {start_epoch})")
else:
# loading a bare (model only) checkpoint for fine-tune or evaluation
model.load_state_dict(checkpoint)
logging.info(f"=> loaded checkpoint '{args.resume}' (epoch {start_epoch})")
else:
logging.info("=> no checkpoint found at '{}'".format(args.resume))
# initialize datasets
data = get_data(args, (preprocess_train, preprocess_val), epoch=start_epoch)
if hasattr(args, "torchcompile") and args.torchcompile:
logging.info('Compiling model...')
try:
model = torch.compile(model)
except Exception:
logging.warn("please use PyTorch 2.0")
# create scheduler if train
scheduler = None
if 'train' in data and optimizer is not None:
total_steps = data["train"].dataloader.num_batches * args.epochs
scheduler = cosine_lr(optimizer, args.lr, args.warmup, total_steps)
# determine if this worker should save logs and checkpoints. only do so if it is rank == 0
args.save_logs = args.logs and args.logs.lower() != 'none' and is_master(args)
writer = None
if args.save_logs and args.tensorboard:
assert tensorboard is not None, "Please install tensorboard."
writer = tensorboard.SummaryWriter(args.tensorboard_path)
if args.wandb and is_master(args):
assert wandb is not None, 'Please install wandb.'
logging.debug('Starting wandb.')
args.train_sz = data["train"].dataloader.num_samples
if args.val_data is not None:
args.val_sz = data["val"].dataloader.num_samples
# you will have to configure this for your project!
wandb.init(
project="open-clip",
notes=args.wandb_notes,
tags=[],
config=vars(args),
)
# define our custom x axis metric
wandb.define_metric("epoch")
# define which metrics will be plotted against it
wandb.define_metric("val/*", step_metric="epoch")
if args.debug:
wandb.watch(model, log='all')
wandb.save(params_file)
logging.debug('Finished loading wandb.')
if 'train' not in data or hasattr(args, "eval") and args.eval: # huxu: merge native/SLIP eval.
# TODO: move to below first.
from training.slip_evaluate import slip_evaluate
from open_clip import HFTokenizer
context_length = args.tokenizer_context_length
tokenizer_kwargs = {}
tokenize = HFTokenizer(
args.text_encoder_model_name,
context_length=context_length,
**tokenizer_kwargs,
)
# in case a downloaded model.
os.makedirs(args.output_dir, exist_ok=True)
slip_evaluate(args, model, preprocess_val, tokenize)
evaluate(model, data, start_epoch, args, writer)
return
epoch_step = start_epoch_step
from training.slip_evaluate import slip_evaluate
# Now create the new tokenizer...
from open_clip import HFTokenizer
context_length = args.tokenizer_context_length
tokenizer_kwargs = {}
tokenize = HFTokenizer(
args.text_encoder_model_name,
context_length=context_length,
**tokenizer_kwargs,
)
for epoch in range(start_epoch, args.epochs):
if is_master(args):
logging.info(f'Start epoch {epoch}')
if hasattr(args, "engine"):
engine = args.engine
module = train
engine_cls = getattr(module, engine)
engine_cls(model, data, epoch, epoch_step, optimizer, scaler, scheduler, args, writer)
else:
train_one_epoch(model, data, epoch, optimizer, scaler, scheduler, args, writer)
epoch_step = 0 # reset for next epoch.
completed_epoch = epoch + 1
if any(v in data for v in ('val', 'imagenet-val', 'imagenet-v2')):
evaluate(model, data, completed_epoch, args, writer)
# Do downstream evaluation after every eval_freq
if (completed_epoch % args.eval_freq) == 0:
slip_evaluate(args, model, preprocess_val, tokenize, epoch)
save_checkpoint(model, optimizer, scaler, completed_epoch, args)
if hasattr(args, "eval") and args.eval and any(v in data for v in ('val', 'imagenet-val', 'imagenet-v2')):
from training.slip_evaluate import slip_evaluate
slip_evaluate(args, model, preprocess_val, tokenize)
if args.wandb and is_master(args):
wandb.finish()
def copy_codebase(args):
from shutil import copytree, ignore_patterns
new_code_path = os.path.join(args.logs, args.name, "code")
if os.path.exists(new_code_path):
print(
f"Error. Experiment already exists at {new_code_path}. Use --name to specify a new experiment."
)
return -1
print(f"Copying codebase to {new_code_path}")
current_code_path = os.path.realpath(__file__)
for _ in range(3):
current_code_path = os.path.dirname(current_code_path)
copytree(current_code_path, new_code_path, ignore=ignore_patterns('log', 'logs', 'wandb'))
print("Done copying code.")
return 1
if __name__ == "__main__":
import sys
sys.path.append("./")
from configs import search_config
config = search_config(sys.argv[1])
exp_name = sys.argv[2]
load_path = sys.argv[3]
if len(sys.argv) == 3:
config.resume = os.path.join(config.output_dir, "checkpoints", sys.argv[2])
config.pretrained = load_path
config.logs = exp_name
config.output_dir = os.path.join(config.logs, config.name)
main(config)
|