File size: 15,094 Bytes
37b3db0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

"""refactored from `main` in `eval_zeroshot.py` (SLIP) for clarity.
"""
import random
import torch
import json
import os
from tqdm import tqdm
from sklearn import metrics
from constants import RSNA_CLASS_PROMPTS_webdataset, modality_indices_radimagenet_test_set
from collections import defaultdict


def load_metadata(metadir="clipeval"):
    with open(os.path.join(metadir, 'dataset_catalog.json')) as f:
        catalog = json.load(f)

    with open(os.path.join(metadir, 'templates.json')) as f:
        all_templates = json.load(f)

    with open(os.path.join(metadir, 'labels.json')) as f:
        all_labels = json.load(f)
    return catalog, all_templates, all_labels


def evaluate(d, val_loader, templates, labels, model, tokenizer, classnorm=False):
    print('Evaluating {}'.format(d))

    is_acc = d not in ['FGVCAircraft', 'OxfordPets', 'Caltech101', 'Flowers102', 'Kinetics700', 'HatefulMemes']
    if d == 'radimagenet':
        acc, us_acc, mri_acc, ct_acc = validate_zeroshot(val_loader, templates, labels, model, tokenizer,
                                                         is_acc, d, classnorm)
    else:
        acc_or_outputs = validate_zeroshot(val_loader, templates, labels, model, tokenizer, is_acc, d, classnorm)
    if d in ['FGVCAircraft', 'OxfordPets', 'Caltech101', 'Flowers102']:
        metric = mean_per_class(*acc_or_outputs)
    elif d == 'Kinetics700':
        top1, top5 = accuracy(*acc_or_outputs, topk=(1, 5))
        metric = (top1 + top5) / 2
        metric = metric.item()
    elif d == 'HatefulMemes':
        metric = roc_auc(*acc_or_outputs)
    elif d == 'radimagenet':
        metric = {"acc": acc, "US acc": us_acc, "MRI acc": mri_acc, "CT acc": ct_acc}
    else:
        metric = acc_or_outputs

    return metric


@torch.no_grad()
def build_text_features(templates, labels, model, tokenizer, skip_text_projection=False, classnorm=False):
    # TODO: add device
    text_features = []
    if type(templates) == dict:
        class_similarities = []
        class_names = []
        for cls_name, cls_text in templates.items():
            texts = tokenizer(cls_text).to(next(model.parameters()).device, non_blocking=True)
            class_embeddings = model.encode_text(texts)
            class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True)

            if True:
                cls_sim = class_embeddings.mean(dim=0)  # equivalent to prompt ensembling
            else:
                cls_sim = class_embeddings[0]
            class_similarities.append(cls_sim)
            class_names.append(cls_name)

        text_features = torch.stack(class_similarities, dim=0)
    elif type(templates) == list and templates[0] == "Meniscal abnormality detected in MRI imaging of the knee.":
        print("Encoding captions for RadImageNet dataset")
        for single_template in templates:
            texts = tokenizer(single_template).to(next(model.parameters()).device, non_blocking=True)
            class_embeddings = model.encode_text(texts)
            class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True)
            text_features.append(class_embeddings)
        text_features = torch.stack(text_features, dim=0).squeeze(1)
    else:
        for label in labels:
            if isinstance(label, list):
                texts = [t.format(l) for t in templates for l in label]
            else:
                texts = [t.format(label) for t in templates]

            texts = tokenizer(texts).to(next(model.parameters()).device, non_blocking=True)
            class_embeddings = model.encode_text(texts)
            class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True)
            class_embeddings = class_embeddings.mean(dim=0)
            text_features.append(class_embeddings)
        text_features = torch.stack(text_features, dim=0)
    mean, std = None, None
    if classnorm:
        mean, std = text_features.mean(dim=0)[None, :], text_features.std(dim=0)[None, :]
        text_features = (text_features - mean) / std
    text_features = text_features / text_features.norm(dim=-1, keepdim=True)
    return text_features, mean, std


def generate_chexpert_class_prompts(class_prompts, n=None):
    """Generate text prompts for each CheXpert classification task
    Parameters
    ----------
    n:  int
        number of prompts per class
    Returns
    -------
    class prompts : dict
        dictionary of class to prompts
    """

    prompts = {}
    for k, v in class_prompts.items():
        cls_prompts = []
        keys = list(v.keys())

        # severity
        for k0 in v[keys[0]]:
            # subtype
            for k1 in v[keys[1]]:
                # location
                for k2 in v[keys[2]]:
                    cls_prompts.append(f"{k0} {k1} {k2}")

        # randomly sample n prompts for zero-shot classification
        # TODO: we shall make use all the candidate prompts for autoprompt tuning
        if n is not None and n < len(cls_prompts):
            prompts[k] = random.sample(cls_prompts, n)
        else:
            prompts[k] = cls_prompts
        print(f'sample {len(prompts[k])} num of prompts for {k} from total {len(cls_prompts)}')
    return prompts


def generate_rsna_class_prompts(class_prompts, n=None):
    prompts = {}
    for k, v in class_prompts.items():
        cls_prompts = []
        keys = list(v.keys())

        for k0 in v[keys[0]]:
            for k1 in v[keys[1]]:
                for k2 in v[keys[2]]:
                    cls_prompts.append(f"{k0} {k1} {k2}")

        # randomly sample n prompts for zero-shot classification
        if n is not None and n < len(cls_prompts):
            prompts[k] = random.sample(cls_prompts, n)
        else:
            prompts[k] = cls_prompts
        print(f'sample {len(prompts[k])} num of prompts for {k} from total {len(cls_prompts)}')
    return prompts


@torch.no_grad()
def validate_zeroshot(val_loader, templates, labels, model, tokenizer, is_acc, name, classnorm=False):
    # switch to evaluate mode
    model.cuda()
    model.eval()

    total_top1 = 0
    total_images = 0

    all_outputs = []
    all_targets = []

    text_features = None
    # Initialize per-class accuracy variables
    class_correct = defaultdict(int)
    class_total = defaultdict(int)

    for samples in tqdm(val_loader):
        # Below if will run only for one iteration
        if text_features is None:
            print('=> encoding captions')
            if name == "chexpert-5x200":
                if not type(templates[list(templates.keys())[0]]) == list:
                    prompted_templates = generate_chexpert_class_prompts(templates, 10)  # 10 prompts per class
                else:
                    k = 11  # This means all 10 templates to be used...
                    print(f"Using {k - 1} templates for the ensembling at test time")
                    for single_key in templates.keys():
                        templates[single_key] = templates[single_key][0:k]
                    prompted_templates = templates
                text_features, mean, std = build_text_features(prompted_templates, None, model, tokenizer,
                                                               classnorm=classnorm)
            elif name == "rsna_pneumonia":
                if not type(templates[list(templates.keys())[0]]) == list:
                    temp = generate_rsna_class_prompts(templates, 10)  # 10 prompts per class
                    # For the case of Pneumonia, we also need second template for normal as well
                    prompted_templates = {'normal': RSNA_CLASS_PROMPTS_webdataset['Normal'],
                                          'pneumonia': temp['Pneumonia']}
                else:
                    k = 1  # This means all 10 templates to be used...
                    print(f"Using {k - 1} templates for the ensembling at test time")
                    for single_key in templates.keys():
                        templates[single_key] = templates[single_key][0:k]
                    prompted_templates = templates
                text_features, mean, std = build_text_features(prompted_templates, None, model, tokenizer,
                                                               classnorm=classnorm)
            else:
                if type(templates) == dict:
                    k = 11  # This means all 10 templates to be used...
                    print(f"Using {k - 1} templates for the ensembling at test time")
                    for single_key in templates.keys():
                        length = len(templates[single_key])
                        templates[single_key] = templates[single_key][0:length]
                    prompted_templates = templates
                else:
                    prompted_templates = templates
                text_features, mean, std = build_text_features(prompted_templates, labels, model, tokenizer,
                                                               classnorm=classnorm)
        if isinstance(samples, tuple) or isinstance(samples, list):
            images, target = samples[0], samples[1]
        elif isinstance(samples, dict):
            images, target = samples["pixel_values"], samples["targets"]
        else:
            raise ValueError("unknown sample type", type(samples))

        images = images.cuda(non_blocking=True)
        target = target.cuda(non_blocking=True)

        # encode images
        image_features = model.encode_image(images)

        if classnorm:
            image_features = (image_features - mean) / std
        print("no normalizing this time)")
        # image_features = image_features / image_features.norm(dim=-1, keepdim=True)
        # cosine similarity as logits
        logits_per_image = image_features @ text_features.t()
        logits_per_image = logits_per_image.cpu()
        target = target.cpu()
        if name == "chexpert-5x200":
            # convert to label encoding
            target = torch.argmax(target, axis=1)
        if is_acc:
            # measure accuracy and record loss
            pred = logits_per_image.argmax(dim=1)
            correct = pred.eq(target).sum()
            total_top1 += correct.item()
            total_images += images.size(0)
            if name == "radimagenet":
                # Update per-class accuracy counts
                for t, p in zip(target, pred):
                    class_correct[t.item()] += p.eq(t).item()
                    class_total[t.item()] += 1
            # Also save those to have results for the other metrics
            all_outputs.append(logits_per_image)
            all_targets.append(target)
        else:
            all_outputs.append(logits_per_image)
            all_targets.append(target)

    if is_acc:
        if name == "radimagenet":
            # Now calculate accuracies for each modality
            US_all_class_correct = 0
            MRI_all_class_correct = 0
            CT_all_class_correct = 0
            US_all_class_total = 0
            MRI_all_class_total = 0
            CT_all_class_total = 0
            for single_us_index in modality_indices_radimagenet_test_set['US']:
                US_all_class_correct += class_correct[single_us_index]
                US_all_class_total += class_total[single_us_index]
            for single_mri_index in modality_indices_radimagenet_test_set['MRI']:
                MRI_all_class_correct += class_correct[single_mri_index]
                MRI_all_class_total += class_total[single_mri_index]
            for single_ct_index in modality_indices_radimagenet_test_set['CT']:
                CT_all_class_correct += class_correct[single_ct_index]
                CT_all_class_total += class_total[single_ct_index]

            return 100 * total_top1 / total_images, \
                   100 * US_all_class_correct / US_all_class_total, \
                   100 * MRI_all_class_correct / MRI_all_class_total, \
                   100 * CT_all_class_correct / CT_all_class_total
        if name == 'radimagenet' or name == 'chexpert-5x200' or name == 'CT_sagittal' or name == 'CT_axial' \
                or name == 'CT_coronal' or name == 'dr_uwf' or name == 'dr_regular' \
                or name == 'PCAM' or name == 'LC25000_lung' or name == 'LC25000_colon' \
                or name == "NCK_CRC" or name == 'BACH' or name == 'Osteo' \
                or name == 'skin_cancer' or name == 'skin_tumor' or name == 'SICAPv2' \
                or name == 'five_retina' or name == 'odir_retina':
            return 100 * total_top1 / total_images
        else:
            # Now also return the other metric results
            all_outputs = torch.cat(all_outputs)
            all_targets = torch.cat(all_targets)
            accuracy = 100 * total_top1 / total_images
            auc_roc = roc_auc(all_outputs, all_targets)
            f1_score = F1_score(all_outputs, all_targets)
            precision_score = Precision_score(all_outputs, all_targets)
            recall_score = Recall_score(all_outputs, all_targets)
            return {"acc": accuracy, "auc_roc": auc_roc, "f1_score": f1_score,
                    "precision_score": precision_score, "recall_score": recall_score}
    else:
        return torch.cat(all_outputs), torch.cat(all_targets)


def accuracy(output, target, topk=(1,)):
    """Computes the accuracy over the k top predictions for the specified values of k"""
    with torch.no_grad():
        maxk = max(topk)
        batch_size = target.size(0)

        _, pred = output.topk(maxk, 1, True, True)
        pred = pred.t()
        correct = pred.eq(target.reshape(1, -1).expand_as(pred))

        res = []
        for k in topk:
            correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
            res.append(correct_k.mul_(100.0 / batch_size))
        return res


def Recall_score(outputs, targets):
    pred = outputs.argmax(1)
    Recall_score = metrics.recall_score(targets, pred)
    return 100 * Recall_score


def F1_score(outputs, targets):
    pred = outputs.argmax(1)
    F1_score = metrics.f1_score(targets, pred)
    return 100 * F1_score


def Precision_score(outputs, targets):
    pred = outputs.argmax(1)
    Precision_score = metrics.precision_score(targets, pred)
    return 100 * Precision_score


def mean_per_class(outputs, targets):
    pred = outputs.argmax(1)
    confusion_matrix = metrics.confusion_matrix(targets, pred)
    per_classes = confusion_matrix.diagonal() / confusion_matrix.sum(axis=1)

    return 100 * per_classes.mean()


def roc_auc(outputs, targets):
    pos_score = outputs[:, 1] - outputs[:, 0]
    metric = metrics.roc_auc_score(targets, pos_score)

    return 100 * metric


if __name__ == '__main__':
    logits = torch.randn(128, 10)
    targets = torch.randint(size=(128,), low=0, high=10)

    evaluate("imagenet", logits, targets)