File size: 15,094 Bytes
37b3db0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""refactored from `main` in `eval_zeroshot.py` (SLIP) for clarity.
"""
import random
import torch
import json
import os
from tqdm import tqdm
from sklearn import metrics
from constants import RSNA_CLASS_PROMPTS_webdataset, modality_indices_radimagenet_test_set
from collections import defaultdict
def load_metadata(metadir="clipeval"):
with open(os.path.join(metadir, 'dataset_catalog.json')) as f:
catalog = json.load(f)
with open(os.path.join(metadir, 'templates.json')) as f:
all_templates = json.load(f)
with open(os.path.join(metadir, 'labels.json')) as f:
all_labels = json.load(f)
return catalog, all_templates, all_labels
def evaluate(d, val_loader, templates, labels, model, tokenizer, classnorm=False):
print('Evaluating {}'.format(d))
is_acc = d not in ['FGVCAircraft', 'OxfordPets', 'Caltech101', 'Flowers102', 'Kinetics700', 'HatefulMemes']
if d == 'radimagenet':
acc, us_acc, mri_acc, ct_acc = validate_zeroshot(val_loader, templates, labels, model, tokenizer,
is_acc, d, classnorm)
else:
acc_or_outputs = validate_zeroshot(val_loader, templates, labels, model, tokenizer, is_acc, d, classnorm)
if d in ['FGVCAircraft', 'OxfordPets', 'Caltech101', 'Flowers102']:
metric = mean_per_class(*acc_or_outputs)
elif d == 'Kinetics700':
top1, top5 = accuracy(*acc_or_outputs, topk=(1, 5))
metric = (top1 + top5) / 2
metric = metric.item()
elif d == 'HatefulMemes':
metric = roc_auc(*acc_or_outputs)
elif d == 'radimagenet':
metric = {"acc": acc, "US acc": us_acc, "MRI acc": mri_acc, "CT acc": ct_acc}
else:
metric = acc_or_outputs
return metric
@torch.no_grad()
def build_text_features(templates, labels, model, tokenizer, skip_text_projection=False, classnorm=False):
# TODO: add device
text_features = []
if type(templates) == dict:
class_similarities = []
class_names = []
for cls_name, cls_text in templates.items():
texts = tokenizer(cls_text).to(next(model.parameters()).device, non_blocking=True)
class_embeddings = model.encode_text(texts)
class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True)
if True:
cls_sim = class_embeddings.mean(dim=0) # equivalent to prompt ensembling
else:
cls_sim = class_embeddings[0]
class_similarities.append(cls_sim)
class_names.append(cls_name)
text_features = torch.stack(class_similarities, dim=0)
elif type(templates) == list and templates[0] == "Meniscal abnormality detected in MRI imaging of the knee.":
print("Encoding captions for RadImageNet dataset")
for single_template in templates:
texts = tokenizer(single_template).to(next(model.parameters()).device, non_blocking=True)
class_embeddings = model.encode_text(texts)
class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True)
text_features.append(class_embeddings)
text_features = torch.stack(text_features, dim=0).squeeze(1)
else:
for label in labels:
if isinstance(label, list):
texts = [t.format(l) for t in templates for l in label]
else:
texts = [t.format(label) for t in templates]
texts = tokenizer(texts).to(next(model.parameters()).device, non_blocking=True)
class_embeddings = model.encode_text(texts)
class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True)
class_embeddings = class_embeddings.mean(dim=0)
text_features.append(class_embeddings)
text_features = torch.stack(text_features, dim=0)
mean, std = None, None
if classnorm:
mean, std = text_features.mean(dim=0)[None, :], text_features.std(dim=0)[None, :]
text_features = (text_features - mean) / std
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
return text_features, mean, std
def generate_chexpert_class_prompts(class_prompts, n=None):
"""Generate text prompts for each CheXpert classification task
Parameters
----------
n: int
number of prompts per class
Returns
-------
class prompts : dict
dictionary of class to prompts
"""
prompts = {}
for k, v in class_prompts.items():
cls_prompts = []
keys = list(v.keys())
# severity
for k0 in v[keys[0]]:
# subtype
for k1 in v[keys[1]]:
# location
for k2 in v[keys[2]]:
cls_prompts.append(f"{k0} {k1} {k2}")
# randomly sample n prompts for zero-shot classification
# TODO: we shall make use all the candidate prompts for autoprompt tuning
if n is not None and n < len(cls_prompts):
prompts[k] = random.sample(cls_prompts, n)
else:
prompts[k] = cls_prompts
print(f'sample {len(prompts[k])} num of prompts for {k} from total {len(cls_prompts)}')
return prompts
def generate_rsna_class_prompts(class_prompts, n=None):
prompts = {}
for k, v in class_prompts.items():
cls_prompts = []
keys = list(v.keys())
for k0 in v[keys[0]]:
for k1 in v[keys[1]]:
for k2 in v[keys[2]]:
cls_prompts.append(f"{k0} {k1} {k2}")
# randomly sample n prompts for zero-shot classification
if n is not None and n < len(cls_prompts):
prompts[k] = random.sample(cls_prompts, n)
else:
prompts[k] = cls_prompts
print(f'sample {len(prompts[k])} num of prompts for {k} from total {len(cls_prompts)}')
return prompts
@torch.no_grad()
def validate_zeroshot(val_loader, templates, labels, model, tokenizer, is_acc, name, classnorm=False):
# switch to evaluate mode
model.cuda()
model.eval()
total_top1 = 0
total_images = 0
all_outputs = []
all_targets = []
text_features = None
# Initialize per-class accuracy variables
class_correct = defaultdict(int)
class_total = defaultdict(int)
for samples in tqdm(val_loader):
# Below if will run only for one iteration
if text_features is None:
print('=> encoding captions')
if name == "chexpert-5x200":
if not type(templates[list(templates.keys())[0]]) == list:
prompted_templates = generate_chexpert_class_prompts(templates, 10) # 10 prompts per class
else:
k = 11 # This means all 10 templates to be used...
print(f"Using {k - 1} templates for the ensembling at test time")
for single_key in templates.keys():
templates[single_key] = templates[single_key][0:k]
prompted_templates = templates
text_features, mean, std = build_text_features(prompted_templates, None, model, tokenizer,
classnorm=classnorm)
elif name == "rsna_pneumonia":
if not type(templates[list(templates.keys())[0]]) == list:
temp = generate_rsna_class_prompts(templates, 10) # 10 prompts per class
# For the case of Pneumonia, we also need second template for normal as well
prompted_templates = {'normal': RSNA_CLASS_PROMPTS_webdataset['Normal'],
'pneumonia': temp['Pneumonia']}
else:
k = 1 # This means all 10 templates to be used...
print(f"Using {k - 1} templates for the ensembling at test time")
for single_key in templates.keys():
templates[single_key] = templates[single_key][0:k]
prompted_templates = templates
text_features, mean, std = build_text_features(prompted_templates, None, model, tokenizer,
classnorm=classnorm)
else:
if type(templates) == dict:
k = 11 # This means all 10 templates to be used...
print(f"Using {k - 1} templates for the ensembling at test time")
for single_key in templates.keys():
length = len(templates[single_key])
templates[single_key] = templates[single_key][0:length]
prompted_templates = templates
else:
prompted_templates = templates
text_features, mean, std = build_text_features(prompted_templates, labels, model, tokenizer,
classnorm=classnorm)
if isinstance(samples, tuple) or isinstance(samples, list):
images, target = samples[0], samples[1]
elif isinstance(samples, dict):
images, target = samples["pixel_values"], samples["targets"]
else:
raise ValueError("unknown sample type", type(samples))
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# encode images
image_features = model.encode_image(images)
if classnorm:
image_features = (image_features - mean) / std
print("no normalizing this time)")
# image_features = image_features / image_features.norm(dim=-1, keepdim=True)
# cosine similarity as logits
logits_per_image = image_features @ text_features.t()
logits_per_image = logits_per_image.cpu()
target = target.cpu()
if name == "chexpert-5x200":
# convert to label encoding
target = torch.argmax(target, axis=1)
if is_acc:
# measure accuracy and record loss
pred = logits_per_image.argmax(dim=1)
correct = pred.eq(target).sum()
total_top1 += correct.item()
total_images += images.size(0)
if name == "radimagenet":
# Update per-class accuracy counts
for t, p in zip(target, pred):
class_correct[t.item()] += p.eq(t).item()
class_total[t.item()] += 1
# Also save those to have results for the other metrics
all_outputs.append(logits_per_image)
all_targets.append(target)
else:
all_outputs.append(logits_per_image)
all_targets.append(target)
if is_acc:
if name == "radimagenet":
# Now calculate accuracies for each modality
US_all_class_correct = 0
MRI_all_class_correct = 0
CT_all_class_correct = 0
US_all_class_total = 0
MRI_all_class_total = 0
CT_all_class_total = 0
for single_us_index in modality_indices_radimagenet_test_set['US']:
US_all_class_correct += class_correct[single_us_index]
US_all_class_total += class_total[single_us_index]
for single_mri_index in modality_indices_radimagenet_test_set['MRI']:
MRI_all_class_correct += class_correct[single_mri_index]
MRI_all_class_total += class_total[single_mri_index]
for single_ct_index in modality_indices_radimagenet_test_set['CT']:
CT_all_class_correct += class_correct[single_ct_index]
CT_all_class_total += class_total[single_ct_index]
return 100 * total_top1 / total_images, \
100 * US_all_class_correct / US_all_class_total, \
100 * MRI_all_class_correct / MRI_all_class_total, \
100 * CT_all_class_correct / CT_all_class_total
if name == 'radimagenet' or name == 'chexpert-5x200' or name == 'CT_sagittal' or name == 'CT_axial' \
or name == 'CT_coronal' or name == 'dr_uwf' or name == 'dr_regular' \
or name == 'PCAM' or name == 'LC25000_lung' or name == 'LC25000_colon' \
or name == "NCK_CRC" or name == 'BACH' or name == 'Osteo' \
or name == 'skin_cancer' or name == 'skin_tumor' or name == 'SICAPv2' \
or name == 'five_retina' or name == 'odir_retina':
return 100 * total_top1 / total_images
else:
# Now also return the other metric results
all_outputs = torch.cat(all_outputs)
all_targets = torch.cat(all_targets)
accuracy = 100 * total_top1 / total_images
auc_roc = roc_auc(all_outputs, all_targets)
f1_score = F1_score(all_outputs, all_targets)
precision_score = Precision_score(all_outputs, all_targets)
recall_score = Recall_score(all_outputs, all_targets)
return {"acc": accuracy, "auc_roc": auc_roc, "f1_score": f1_score,
"precision_score": precision_score, "recall_score": recall_score}
else:
return torch.cat(all_outputs), torch.cat(all_targets)
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.reshape(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def Recall_score(outputs, targets):
pred = outputs.argmax(1)
Recall_score = metrics.recall_score(targets, pred)
return 100 * Recall_score
def F1_score(outputs, targets):
pred = outputs.argmax(1)
F1_score = metrics.f1_score(targets, pred)
return 100 * F1_score
def Precision_score(outputs, targets):
pred = outputs.argmax(1)
Precision_score = metrics.precision_score(targets, pred)
return 100 * Precision_score
def mean_per_class(outputs, targets):
pred = outputs.argmax(1)
confusion_matrix = metrics.confusion_matrix(targets, pred)
per_classes = confusion_matrix.diagonal() / confusion_matrix.sum(axis=1)
return 100 * per_classes.mean()
def roc_auc(outputs, targets):
pos_score = outputs[:, 1] - outputs[:, 0]
metric = metrics.roc_auc_score(targets, pos_score)
return 100 * metric
if __name__ == '__main__':
logits = torch.randn(128, 10)
targets = torch.randint(size=(128,), low=0, high=10)
evaluate("imagenet", logits, targets)
|