File size: 25,769 Bytes
37b3db0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from collections import defaultdict
import json
import os
import pickle
import zipfile
import pandas as pd
import numpy as np
from PIL import Image, ImageFile
import ast
import torch
import random
from constants import CHEXPERT_COMPETITION_TASKS
from torchvision import transforms
from torchvision import datasets as t_datasets
import ast
ImageFile.LOAD_TRUNCATED_IMAGES = True
def pil_loader(path):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
class FileListDataset(torch.utils.data.Dataset):
def __init__(self, images, labels, transform=None, target_transform=None):
self.transform = transform
self.target_transform = target_transform
self.images = np.load(images)
self.labels = np.load(labels)
def __getitem__(self, index):
img = pil_loader(self.images[index])
target = self.labels[index]
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
return len(self.images)
def get_downstream_dataset(catalog, name, is_train, transform):
entry = catalog[name]
root = entry['path']
if entry['type'] == 'imagefolder':
dataset = t_datasets.ImageFolder(os.path.join(root, entry['train'] if is_train else entry['test']),
transform=transform)
elif entry['type'] == 'special':
if name == 'CIFAR10':
dataset = t_datasets.CIFAR10(root, train=is_train,
transform=transform, download=True)
elif name == 'CIFAR100':
dataset = t_datasets.CIFAR100(root, train=is_train,
transform=transform, download=True)
elif name == 'STL10':
dataset = t_datasets.STL10(root, split='train' if is_train else 'test',
transform=transform, download=True)
elif name == 'MNIST':
dataset = t_datasets.MNIST(root, train=is_train,
transform=transform, download=True)
elif name == 'chexpert-5x200':
dataset = ZeroShotImageDataset(['chexpert-5x200'], CHEXPERT_COMPETITION_TASKS, transform
, parent_data_path=root)
elif name == "radimagenet":
dataset = RadImageNet(root, transform)
elif name == "rsna_pneumonia":
dataset = RSNA_Pneumonia(root, transform)
elif name == "thyroid_us":
dataset = thyroid_us_and_breast(root, transform, "thyroid_test_fold1.csv")
elif name == "breast_us":
dataset = thyroid_us_and_breast(root, transform, "breast_test_fold1.csv")
elif name == "meniscal_mri":
dataset = meniscal_mri(root, transform, "meniscus_test_fold1.csv")
elif name == 'acl_mri':
dataset = acl_mri(root, transform, "test_fold1.csv")
elif name == 'CT_axial':
dataset = CT_dataset(root, transform, "organs_axial")
elif name == 'CT_coronal':
dataset = CT_dataset(root, transform, "organs_coronal")
elif name == 'CT_sagittal':
dataset = CT_dataset(root, transform, "organs_sagittal")
elif name == 'dr_regular':
dataset = CT_dataset(root, transform, "dr_regular")
elif name == 'dr_uwf':
dataset = CT_dataset(root, transform, "dr_uwf")
elif name == 'LC25000_lung':
dataset = LC25000(root, transform, "lung")
elif name == 'LC25000_colon':
dataset = LC25000(root, transform, "colon")
elif name == 'PCAM':
dataset = PCAM(root, transform, "PCam_Test_preprocessed")
elif name == 'NCK_CRC':
dataset = NCK_CRC(root, transform, "CRC-VAL-HE-7K")
elif name == 'BACH':
dataset = BACH(root, transform, "BACH")
elif name == 'Osteo':
dataset = Osteo(root, transform, "Osteosarcoma")
elif name == 'skin_cancer':
dataset = Skin_datasets(root, transform, "skin_tumor", 'cancer')
elif name == 'skin_tumor':
dataset = Skin_datasets(root, transform, "skin_tumor", 'tumor')
elif name == 'refuge_retina':
dataset = Retina_datasets(root, transform, '25_REFUGE.csv')
elif name == 'five_retina':
dataset = Retina_datasets(root, transform, '13_FIVES.csv')
elif name == 'odir_retina':
dataset = Retina_datasets(root, transform, '08_ODIR200x3.csv')
elif entry['type'] == 'filelist':
path = entry['train'] if is_train else entry['test']
val_images = os.path.join(root, path + '_images.npy')
val_labels = os.path.join(root, path + '_labels.npy')
if name == 'CLEVRCounts':
target_transform = lambda x: ['count_10', 'count_3', 'count_4', 'count_5', 'count_6', 'count_7', 'count_8',
'count_9'].index(x)
else:
target_transform = None
dataset = FileListDataset(val_images, val_labels, transform, target_transform)
else:
raise Exception('Unknown dataset')
return dataset
class ZeroShotImageDataset(torch.utils.data.Dataset):
def __init__(self,
datalist=['chexpert-5x200'],
class_names=None,
imgtransform=None,
parent_data_path="",
) -> None:
'''support data list in mimic-5x200, chexpert-5x200, rsna-balanced-test, covid-test
args:
imgtransform: a torchvision transform
cls_prompts: a dict of prompt sentences, cls:[sent1, sent2, ..],
'''
super().__init__()
self.transform = imgtransform
self.class_names = class_names
self.parent_data_path = parent_data_path
# imgpath, subject_id, report, labels...(14 labels)
df_list = []
for data in datalist:
filename = f'./local_data/{data}.csv'
print('load data from', filename)
df = pd.read_csv(filename, index_col=0)
df_list.append(df)
self.df = pd.concat(df_list, axis=0).reset_index(drop=True)
def __getitem__(self, index):
row = self.df.iloc[index]
img = Image.open(os.path.join(self.parent_data_path, row.imgpath))
# img = self._pad_img(img)
img = self.transform(img)
label = torch.from_numpy(row[self.class_names].values.astype(np.float_))
return img, label
def _pad_img(self, img, min_size=224, fill_color=0):
'''pad img to square.
'''
x, y = img.size
size = max(min_size, x, y)
new_im = Image.new('L', (size, size), fill_color)
new_im.paste(img, (int((size - x) / 2), int((size - y) / 2)))
return new_im
def __len__(self):
return len(self.df)
class RadImageNet(torch.utils.data.Dataset):
def __init__(self, parent_path, transform=None):
"""
Args:
csv_file (string): Path to the CSV file containing image paths and labels.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
self.data = pd.read_csv(os.path.join(parent_path, "radimagenet_test_set_formatted.csv"))
self.transform = transform
self.parent_data_path = parent_path
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
img_name = self.data.iloc[idx, 0]
img_name = ast.literal_eval(img_name)[0]
img = Image.open(os.path.join(self.parent_data_path, img_name))
label = self.data.iloc[idx, 1]
if self.transform:
image = self.transform(img)
return image, label
class CT_dataset(torch.utils.data.Dataset):
def __init__(self, parent_path, transform=None, foldername=None):
"""
Args:
csv_file (string): Path to the CSV file containing image paths and labels.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
all_data = pd.read_csv(os.path.join(os.path.join(parent_path, foldername),
"annotations.csv"))
# Filter the data to only retain the test samples
self.data = all_data[all_data['split'] == 'test']
self.transform = transform
self.parent_data_path = os.path.join(parent_path, foldername)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
img_name = self.data.iloc[idx, 0]
img = Image.open(os.path.join(self.parent_data_path, img_name))
label = self.data.iloc[idx, 2]
if self.transform:
image = self.transform(img)
return image, label
class LC25000(torch.utils.data.Dataset):
def __init__(self, parent_path, transform=None, split=None):
"""
Args:
csv_file (string): Path to the CSV file containing image paths and labels.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
if split == "lung":
classes = ['lung_aca', 'lung_n', 'lung_scc']
else:
classes = ['colon_aca', 'colon_n']
self.split = split
self.class_name_folder = []
self.images = []
self.labels = []
for idx, single_class_folder in enumerate(classes):
images_per_classes = list(os.listdir(os.path.join(parent_path, single_class_folder)))
self.images = self.images + images_per_classes
self.labels = self.labels + ([idx] * len(images_per_classes))
self.class_name_folder = self.class_name_folder + ([single_class_folder] * len(images_per_classes))
self.transform = transform
self.parent_data_path = parent_path
assert len(self.images) == len(self.labels) == len(self.class_name_folder)
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
img_name = self.images[idx]
class_folder_name = self.class_name_folder[idx]
img = Image.open(os.path.join(os.path.join(self.parent_data_path, class_folder_name), img_name))
label = self.labels[idx]
if self.transform:
image = self.transform(img)
return image, label
class PCAM(torch.utils.data.Dataset):
def __init__(self, parent_path, transform=None, foldername=None):
"""
Args:
csv_file (string): Path to the CSV file containing image paths and labels.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
all_files = os.listdir(os.path.join(parent_path, foldername))
# Filter the data to only retain the test samples
self.data = all_files
# Create labels
labels = []
for single_file in all_files:
splitted_label = int(single_file.split("_")[1].split(".")[0])
labels.append(splitted_label)
self.labels = labels
self.transform = transform
self.parent_data_path = os.path.join(parent_path, foldername)
assert len(self.labels) == len(self.data)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
img_name = self.data[idx]
img = Image.open(os.path.join(self.parent_data_path, img_name))
label = self.labels[idx]
if self.transform:
image = self.transform(img)
return image, label
class NCK_CRC(torch.utils.data.Dataset):
def __init__(self, parent_path, transform=None, foldername=None):
"""
Args:
csv_file (string): Path to the CSV file containing image paths and labels.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
NCK_CRC_converter = {"ADI": 0,
"DEB": 1,
"LYM": 2,
"MUC": 3,
"MUS": 4,
"NORM": 5,
"STR": 6,
"TUM": 7,
}
all_data = []
all_class_names = []
all_labels = []
folder_names = os.listdir(os.path.join(parent_path, foldername))
for single_folder in folder_names:
class_path = os.path.join(os.path.join(parent_path, foldername), single_folder)
images_inside_folder = os.listdir(class_path)
class_label = [NCK_CRC_converter[single_folder]] * len(images_inside_folder)
all_data.extend(images_inside_folder)
all_labels.extend(class_label)
all_class_names.extend([single_folder] * len(images_inside_folder))
# Filter the data to only retain the test samples
self.data = all_data
self.labels = all_labels
self.prefix_name = all_class_names
assert len(self.data) == len(self.labels) == len(self.prefix_name)
self.transform = transform
self.parent_data_path = os.path.join(parent_path, foldername)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
img_name = self.data[idx]
class_name = self.prefix_name[idx]
label = self.labels[idx]
img = Image.open(os.path.join(self.parent_data_path, os.path.join(class_name, img_name)))
if self.transform:
image = self.transform(img)
return image, label
class BACH(torch.utils.data.Dataset):
def __init__(self, parent_path, transform=None, foldername=None):
"""
Args:
csv_file (string): Path to the CSV file containing image paths and labels.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
all_data = pd.read_csv(os.path.join(os.path.join(parent_path, foldername),
"microscopy_ground_truth.csv"))
self.data = all_data
self.transform = transform
self.parent_data_path = os.path.join(parent_path, foldername)
self.label_to_text_mapping = {'Normal': 3, 'Invasive': 2, 'InSitu': 1, "Benign": 0}
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
img_name = self.data.iloc[idx, 0]
label_text = self.data.iloc[idx, 1]
img = Image.open(os.path.join(self.parent_data_path, label_text + "/" + img_name))
label = self.label_to_text_mapping[label_text]
if self.transform:
image = self.transform(img)
return image, label
class Retina_datasets(torch.utils.data.Dataset):
def __init__(self, parent_path, transform=None, data=None):
"""
Args:
csv_file (string): Path to the CSV file containing image paths and labels.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
filename = f'./local_data/{data}'
all_data = pd.read_csv(filename)
self.data = all_data
self.transform = transform
self.parent_data_path = parent_path
if data == '25_REFUGE.csv':
self.label_to_text_mapping = {'no glaucoma': 0, 'glaucoma': 1}
elif data == '13_FIVES.csv':
self.label_to_text_mapping = {"age related macular degeneration": 0,
"diabetic retinopathy": 1,
"glaucoma": 2,
"normal": 3}
elif data == '08_ODIR200x3.csv':
self.label_to_text_mapping = {"normal": 0,
"pathologic myopia": 1,
"cataract": 2}
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
img_name = self.data.iloc[idx, 1]
label_text = self.data.iloc[idx, 3] # it is a list
label_text = ast.literal_eval(label_text)[0]
img = Image.open(os.path.join(self.parent_data_path, img_name))
label = self.label_to_text_mapping[label_text]
if self.transform:
image = self.transform(img)
return image, label
class Skin_datasets(torch.utils.data.Dataset):
def __init__(self, parent_path, transform=None, foldername=None, split_type='cancer'):
"""
Args:
csv_file (string): Path to the CSV file containing image paths and labels.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
if split_type == 'cancer':
all_data = pd.read_csv(os.path.join(os.path.join(parent_path, foldername),
"data/tiles-v2.csv"))
# Filter the dataset and take only test samples...
all_data = all_data[all_data['set'] == 'Test']
self.label_to_text_mapping = {
"nontumor_skin_necrosis_necrosis": 0,
"nontumor_skin_muscle_skeletal":
1,
"nontumor_skin_sweatglands_sweatglands":
2,
"nontumor_skin_vessel_vessel":
3,
"nontumor_skin_elastosis_elastosis":
4,
"nontumor_skin_chondraltissue_chondraltissue":
5,
"nontumor_skin_hairfollicle_hairfollicle":
6,
"nontumor_skin_epidermis_epidermis": 7,
"nontumor_skin_nerves_nerves":
8,
"nontumor_skin_subcutis_subcutis":
9,
"nontumor_skin_dermis_dermis":
10,
"nontumor_skin_sebaceousglands_sebaceousglands":
11,
"tumor_skin_epithelial_sqcc":
12,
"tumor_skin_melanoma_melanoma":
13,
"tumor_skin_epithelial_bcc":
14,
"tumor_skin_naevus_naevus":
15
}
else:
all_data = pd.read_csv(os.path.join(os.path.join(parent_path, foldername),
"data/SkinTumorSubset.csv"))
# Filter the dataset and take only test samples...
all_data = all_data[all_data['set'] == 'Test']
self.label_to_text_mapping = {"tumor_skin_epithelial_sqcc":
0,
"tumor_skin_melanoma_melanoma":
1,
"tumor_skin_epithelial_bcc":
2,
"tumor_skin_naevus_naevus":
3
}
self.data = all_data
self.transform = transform
self.parent_data_path = os.path.join(parent_path, foldername)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
img_name = self.data.iloc[idx, 1]
label_text = self.data.iloc[idx, 2]
img = Image.open(os.path.join(self.parent_data_path, img_name))
label = self.label_to_text_mapping[label_text]
if self.transform:
image = self.transform(img)
return image, label
class Osteo(torch.utils.data.Dataset):
def __init__(self, parent_path, transform=None, foldername=None):
"""
Args:
csv_file (string): Path to the CSV file containing image paths and labels.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
all_data = pd.read_csv(os.path.join(os.path.join(parent_path, foldername),
"annotations_final.csv"))
self.data = all_data
self.transform = transform
self.parent_data_path = os.path.join(parent_path, foldername)
self.label_to_text_mapping = {'Viable': 2, 'Non-Tumor': 0, "Non-Viable-Tumor": 1}
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
img_name = self.data.iloc[idx, 0]
label_text = self.data.iloc[idx, 1]
img = Image.open(os.path.join(self.parent_data_path, img_name))
label = self.label_to_text_mapping[label_text]
if self.transform:
image = self.transform(img)
return image, label
class RSNA_Pneumonia(torch.utils.data.Dataset):
def __init__(self, parent_path, transform=None):
"""
Args:
csv_file (string): Path to the CSV file containing image paths and labels.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
self.data = pd.read_csv(os.path.join(parent_path, "RSNA_pneumonia_balanced_testfile.csv"))
self.transform = transform
self.parent_data_path = parent_path
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
img_name = self.data.iloc[idx, 1]
img = Image.open(os.path.join(self.parent_data_path, img_name))
label = self.data.iloc[idx, 2]
if self.transform:
image = self.transform(img)
return image, label
class thyroid_us_and_breast(torch.utils.data.Dataset):
def __init__(self, parent_path, transform, csv_file_name):
"""
Args:
csv_file (string): Path to the CSV file containing image paths and labels.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
self.data = pd.read_csv(os.path.join(parent_path, csv_file_name))
self.transform = transform
self.parent_data_path = parent_path
# self.mapping = {'malignant': 0, 'benign': 1}
self.mapping = {'malignant': 1, 'benign': 0}
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
img_name = self.data.iloc[idx, 0]
img = Image.open(os.path.join(self.parent_data_path, img_name))
label_name = self.data.iloc[idx, 1]
label = self.mapping[label_name]
if self.transform:
image = self.transform(img)
return image, label
class meniscal_mri(torch.utils.data.Dataset):
def __init__(self, parent_path, transform, csv_file_name):
"""
Args:
csv_file (string): Path to the CSV file containing image paths and labels.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
self.data = pd.read_csv(os.path.join(parent_path, csv_file_name))
self.transform = transform
self.parent_data_path = parent_path
self.mapping = {'p': 1, 'n': 0}
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
img_name = self.data.iloc[idx, 0]
img = Image.open(os.path.join(self.parent_data_path, img_name))
label_name = self.data.iloc[idx, 1]
label = self.mapping[label_name]
if self.transform:
image = self.transform(img)
return image, label
class acl_mri(torch.utils.data.Dataset):
def __init__(self, parent_path, transform, csv_file_name):
"""
Args:
csv_file (string): Path to the CSV file containing image paths and labels.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
self.data = pd.read_csv(os.path.join(parent_path, csv_file_name))
self.transform = transform
self.parent_data_path = parent_path
self.mapping = {'yes': 1, 'no': 0}
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
img_name = self.data.iloc[idx, 0]
img = Image.open(os.path.join(self.parent_data_path, img_name))
label_name = self.data.iloc[idx, 1]
label = self.mapping[label_name]
if self.transform:
image = self.transform(img)
return image, label
|