Update app.py
Browse files
app.py
CHANGED
@@ -12,24 +12,28 @@ import torchvision.transforms.functional as TVF
|
|
12 |
|
13 |
|
14 |
CLIP_PATH = "google/siglip-so400m-patch14-384"
|
15 |
-
MODEL_PATH = "
|
16 |
CHECKPOINT_PATH = Path("9em124t2-499968")
|
|
|
17 |
CAPTION_TYPE_MAP = {
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
33 |
}
|
34 |
|
35 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
@@ -139,91 +143,87 @@ image_adapter.eval()
|
|
139 |
image_adapter.to("cuda")
|
140 |
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
composition: str = "rule of thirds", lighting: str = "natural") -> str:
|
147 |
-
torch.cuda.empty_cache()
|
148 |
-
|
149 |
-
# 'any' means no length specified
|
150 |
-
length = None if caption_length == "any" else caption_length
|
151 |
-
|
152 |
-
if isinstance(length, str):
|
153 |
-
try:
|
154 |
-
length = int(length)
|
155 |
-
except ValueError:
|
156 |
-
pass
|
157 |
-
|
158 |
-
# 'rng-tags', 'training_prompt', and 'style_prompt' don't have formal/informal tones
|
159 |
-
if caption_type in ["rng-tags", "training_prompt", "style_prompt"]:
|
160 |
-
caption_tone = "formal"
|
161 |
-
|
162 |
-
# Build prompt
|
163 |
-
prompt_key = (caption_type, caption_tone, isinstance(length, str), isinstance(length, int))
|
164 |
-
if prompt_key not in CAPTION_TYPE_MAP:
|
165 |
-
raise ValueError(f"Invalid caption type: {prompt_key}")
|
166 |
-
|
167 |
-
prompt_str = CAPTION_TYPE_MAP[prompt_key][0].format(length=length, word_count=length)
|
168 |
-
|
169 |
-
if caption_type == "style_prompt":
|
170 |
-
prompt_str += (f" Include details about using a {lens_type} lens, "
|
171 |
-
f"{film_stock} film stock, {composition} composition, and {lighting} lighting.")
|
172 |
-
|
173 |
-
print(f"Prompt: {prompt_str}")
|
174 |
-
|
175 |
-
# Preprocess image
|
176 |
image = input_image.resize((384, 384), Image.LANCZOS)
|
177 |
pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
|
178 |
pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
|
179 |
-
|
180 |
|
181 |
-
|
|
|
|
|
|
|
182 |
prompt = tokenizer.encode(prompt_str, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)
|
183 |
-
|
184 |
-
# Embed image
|
185 |
-
with torch.amp.autocast_mode.autocast('cuda', enabled=True):
|
186 |
-
vision_outputs = clip_model(pixel_values=pixel_values, output_hidden_states=True)
|
187 |
-
image_features = vision_outputs.hidden_states
|
188 |
-
embedded_images = image_adapter(image_features)
|
189 |
-
embedded_images = embedded_images.to('cuda')
|
190 |
-
|
191 |
-
# Embed prompt
|
192 |
prompt_embeds = text_model.model.embed_tokens(prompt.to('cuda'))
|
193 |
-
assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}"
|
194 |
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))
|
195 |
eot_embed = image_adapter.get_eot_embedding().unsqueeze(0).to(dtype=text_model.dtype)
|
196 |
|
197 |
-
# Construct prompts
|
198 |
inputs_embeds = torch.cat([
|
199 |
-
embedded_bos.expand(
|
200 |
-
|
201 |
-
prompt_embeds.expand(
|
202 |
-
eot_embed.expand(
|
203 |
], dim=1)
|
204 |
|
205 |
input_ids = torch.cat([
|
206 |
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
|
207 |
-
torch.zeros((1,
|
208 |
prompt,
|
209 |
torch.tensor([[tokenizer.convert_tokens_to_ids("<|eot_id|>")]], dtype=torch.long),
|
210 |
], dim=1).to('cuda')
|
211 |
attention_mask = torch.ones_like(input_ids)
|
212 |
|
213 |
-
generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=
|
214 |
|
215 |
-
# Trim off the prompt
|
216 |
generate_ids = generate_ids[:, input_ids.shape[1]:]
|
217 |
if generate_ids[0][-1] == tokenizer.eos_token_id or generate_ids[0][-1] == tokenizer.convert_tokens_to_ids("<|eot_id|>"):
|
218 |
generate_ids = generate_ids[:, :-1]
|
219 |
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
if caption_type == "style_prompt":
|
224 |
-
|
|
|
|
|
225 |
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
css = """
|
229 |
h1, h2, h3, h4, h5, h6, p, li, ul, ol, a, .centered-image {
|
@@ -243,10 +243,11 @@ ul, ol {
|
|
243 |
}
|
244 |
"""
|
245 |
|
|
|
246 |
with gr.Blocks(theme="Hev832/Applio", css=css) as demo:
|
247 |
with gr.Tab("Welcome"):
|
248 |
gr.Markdown(
|
249 |
-
|
250 |
<img src="https://path-to-yamamoto-logo.png" alt="Yamamoto Logo" class="centered-image">
|
251 |
|
252 |
# 🎨 Yamamoto JoyCaption: AI-Powered Art Inspiration
|
@@ -263,7 +264,7 @@ with gr.Blocks(theme="Hev832/Applio", css=css) as demo:
|
|
263 |
4. **Generate and Iterate**: Click 'Caption' to analyze your image and use the results to inspire new creations.
|
264 |
"""
|
265 |
)
|
266 |
-
|
267 |
with gr.Tab("JoyCaption"):
|
268 |
with gr.Accordion("How to Use JoyCaption", open=False):
|
269 |
gr.Markdown("""
|
@@ -308,58 +309,68 @@ with gr.Blocks(theme="Hev832/Applio", css=css) as demo:
|
|
308 |
|
309 |
with gr.Row():
|
310 |
with gr.Column():
|
311 |
-
input_image = gr.Image(type="pil", label="
|
312 |
|
313 |
caption_type = gr.Dropdown(
|
314 |
choices=["descriptive", "training_prompt", "rng-tags", "style_prompt"],
|
315 |
-
label="
|
316 |
value="descriptive",
|
317 |
)
|
318 |
|
319 |
caption_tone = gr.Dropdown(
|
320 |
choices=["formal", "informal"],
|
321 |
-
label="
|
322 |
value="formal",
|
323 |
)
|
324 |
|
325 |
caption_length = gr.Dropdown(
|
326 |
choices=["any", "very short", "short", "medium-length", "long", "very long"] +
|
327 |
[str(i) for i in range(20, 261, 10)],
|
328 |
-
label="
|
329 |
value="any",
|
330 |
)
|
331 |
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
value="natural",
|
352 |
-
)
|
353 |
-
|
354 |
-
gr.Markdown("**Friendly Reminder:** The tone and advanced options only work for specific caption types.")
|
355 |
|
356 |
run_button = gr.Button("Make My Caption!")
|
357 |
|
358 |
with gr.Column():
|
359 |
-
output_caption = gr.Textbox(label="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
360 |
|
361 |
-
|
|
|
362 |
|
|
|
363 |
|
364 |
if __name__ == "__main__":
|
365 |
demo.launch()
|
|
|
12 |
|
13 |
|
14 |
CLIP_PATH = "google/siglip-so400m-patch14-384"
|
15 |
+
MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B"
|
16 |
CHECKPOINT_PATH = Path("9em124t2-499968")
|
17 |
+
TITLE = "<h1><center>JoyCaption Alpha One (2024-09-20a)</center></h1>"
|
18 |
CAPTION_TYPE_MAP = {
|
19 |
+
("descriptive", "formal", False, False): ["Write a descriptive caption for this image in a formal tone."],
|
20 |
+
("descriptive", "formal", False, True): ["Write a descriptive caption for this image in a formal tone within {word_count} words."],
|
21 |
+
("descriptive", "formal", True, False): ["Write a {length} descriptive caption for this image in a formal tone."],
|
22 |
+
("descriptive", "informal", False, False): ["Write a descriptive caption for this image in a casual tone."],
|
23 |
+
("descriptive", "informal", False, True): ["Write a descriptive caption for this image in a casual tone within {word_count} words."],
|
24 |
+
("descriptive", "informal", True, False): ["Write a {length} descriptive caption for this image in a casual tone."],
|
25 |
+
|
26 |
+
("training_prompt", "formal", False, False): ["Write a stable diffusion prompt for this image."],
|
27 |
+
("training_prompt", "formal", False, True): ["Write a stable diffusion prompt for this image within {word_count} words."],
|
28 |
+
("training_prompt", "formal", True, False): ["Write a {length} stable diffusion prompt for this image."],
|
29 |
+
|
30 |
+
("rng-tags", "formal", False, False): ["Write a list of Booru tags for this image."],
|
31 |
+
("rng-tags", "formal", False, True): ["Write a list of Booru tags for this image within {word_count} words."],
|
32 |
+
("rng-tags", "formal", True, False): ["Write a {length} list of Booru tags for this image."],
|
33 |
+
|
34 |
+
("style_prompt", "formal", False, False): ["Generate a detailed style prompt for this image, including lens type, film stock, composition notes, and lighting aspects."],
|
35 |
+
("style_prompt", "formal", False, True): ["Generate a detailed style prompt for this image within {word_count} words, including lens type, film stock, composition notes, and lighting aspects."],
|
36 |
+
("style_prompt", "formal", True, False): ["Generate a {length} detailed style prompt for this image, including lens type, film stock, composition notes, and lighting aspects."],
|
37 |
}
|
38 |
|
39 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
|
|
143 |
image_adapter.to("cuda")
|
144 |
|
145 |
|
146 |
+
def preprocess_image(input_image: Image.Image) -> torch.Tensor:
|
147 |
+
"""
|
148 |
+
Preprocess the input image for the CLIP model.
|
149 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
image = input_image.resize((384, 384), Image.LANCZOS)
|
151 |
pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
|
152 |
pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
|
153 |
+
return pixel_values.to('cuda')
|
154 |
|
155 |
+
def generate_caption(text_model, tokenizer, image_features, prompt_str: str, max_new_tokens: int = 300) -> str:
|
156 |
+
"""
|
157 |
+
Generate a caption based on the image features and prompt.
|
158 |
+
"""
|
159 |
prompt = tokenizer.encode(prompt_str, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
prompt_embeds = text_model.model.embed_tokens(prompt.to('cuda'))
|
|
|
161 |
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))
|
162 |
eot_embed = image_adapter.get_eot_embedding().unsqueeze(0).to(dtype=text_model.dtype)
|
163 |
|
|
|
164 |
inputs_embeds = torch.cat([
|
165 |
+
embedded_bos.expand(image_features.shape[0], -1, -1),
|
166 |
+
image_features.to(dtype=embedded_bos.dtype),
|
167 |
+
prompt_embeds.expand(image_features.shape[0], -1, -1),
|
168 |
+
eot_embed.expand(image_features.shape[0], -1, -1),
|
169 |
], dim=1)
|
170 |
|
171 |
input_ids = torch.cat([
|
172 |
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
|
173 |
+
torch.zeros((1, image_features.shape[1]), dtype=torch.long),
|
174 |
prompt,
|
175 |
torch.tensor([[tokenizer.convert_tokens_to_ids("<|eot_id|>")]], dtype=torch.long),
|
176 |
], dim=1).to('cuda')
|
177 |
attention_mask = torch.ones_like(input_ids)
|
178 |
|
179 |
+
generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=max_new_tokens, do_sample=True, suppress_tokens=None)
|
180 |
|
|
|
181 |
generate_ids = generate_ids[:, input_ids.shape[1]:]
|
182 |
if generate_ids[0][-1] == tokenizer.eos_token_id or generate_ids[0][-1] == tokenizer.convert_tokens_to_ids("<|eot_id|>"):
|
183 |
generate_ids = generate_ids[:, :-1]
|
184 |
|
185 |
+
return tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0].strip()
|
186 |
+
|
187 |
+
@spaces.GPU()
|
188 |
+
@torch.no_grad()
|
189 |
+
def stream_chat(input_image: Image.Image, caption_type: str, caption_tone: str, caption_length: str | int, lens_type: str = "", film_stock: str = "", composition_style: str = "") -> str:
|
190 |
+
"""
|
191 |
+
Generate a caption or style prompt based on the input image and parameters.
|
192 |
+
"""
|
193 |
+
torch.cuda.empty_cache()
|
194 |
|
195 |
+
try:
|
196 |
+
length = None if caption_length == "any" else caption_length
|
197 |
+
if isinstance(length, str):
|
198 |
+
length = int(length)
|
199 |
+
except ValueError:
|
200 |
+
raise ValueError(f"Invalid caption length: {caption_length}")
|
201 |
+
|
202 |
+
if caption_type in ["rng-tags", "training_prompt", "style_prompt"]:
|
203 |
+
caption_tone = "formal"
|
204 |
+
|
205 |
+
prompt_key = (caption_type, caption_tone, isinstance(length, str), isinstance(length, int))
|
206 |
+
if prompt_key not in CAPTION_TYPE_MAP:
|
207 |
+
raise ValueError(f"Invalid caption type: {prompt_key}")
|
208 |
+
|
209 |
+
prompt_str = CAPTION_TYPE_MAP[prompt_key][0].format(length=length, word_count=length)
|
210 |
+
|
211 |
if caption_type == "style_prompt":
|
212 |
+
prompt_str += f" Lens type: {lens_type}. Film stock: {film_stock}. Composition style: {composition_style}."
|
213 |
+
|
214 |
+
print(f"Prompt: {prompt_str}")
|
215 |
|
216 |
+
pixel_values = preprocess_image(input_image)
|
217 |
+
|
218 |
+
with torch.amp.autocast_mode.autocast('cuda', enabled=True):
|
219 |
+
vision_outputs = clip_model(pixel_values=pixel_values, output_hidden_states=True)
|
220 |
+
image_features = vision_outputs.hidden_states
|
221 |
+
embedded_images = image_adapter(image_features)
|
222 |
+
embedded_images = embedded_images.to('cuda')
|
223 |
+
|
224 |
+
caption = generate_caption(text_model, tokenizer, embedded_images, prompt_str)
|
225 |
+
|
226 |
+
return caption
|
227 |
|
228 |
css = """
|
229 |
h1, h2, h3, h4, h5, h6, p, li, ul, ol, a, .centered-image {
|
|
|
243 |
}
|
244 |
"""
|
245 |
|
246 |
+
# Gradio interface
|
247 |
with gr.Blocks(theme="Hev832/Applio", css=css) as demo:
|
248 |
with gr.Tab("Welcome"):
|
249 |
gr.Markdown(
|
250 |
+
"""
|
251 |
<img src="https://path-to-yamamoto-logo.png" alt="Yamamoto Logo" class="centered-image">
|
252 |
|
253 |
# 🎨 Yamamoto JoyCaption: AI-Powered Art Inspiration
|
|
|
264 |
4. **Generate and Iterate**: Click 'Caption' to analyze your image and use the results to inspire new creations.
|
265 |
"""
|
266 |
)
|
267 |
+
|
268 |
with gr.Tab("JoyCaption"):
|
269 |
with gr.Accordion("How to Use JoyCaption", open=False):
|
270 |
gr.Markdown("""
|
|
|
309 |
|
310 |
with gr.Row():
|
311 |
with gr.Column():
|
312 |
+
input_image = gr.Image(type="pil", label="Input Image")
|
313 |
|
314 |
caption_type = gr.Dropdown(
|
315 |
choices=["descriptive", "training_prompt", "rng-tags", "style_prompt"],
|
316 |
+
label="Caption Type",
|
317 |
value="descriptive",
|
318 |
)
|
319 |
|
320 |
caption_tone = gr.Dropdown(
|
321 |
choices=["formal", "informal"],
|
322 |
+
label="Caption Tone",
|
323 |
value="formal",
|
324 |
)
|
325 |
|
326 |
caption_length = gr.Dropdown(
|
327 |
choices=["any", "very short", "short", "medium-length", "long", "very long"] +
|
328 |
[str(i) for i in range(20, 261, 10)],
|
329 |
+
label="Caption Length",
|
330 |
value="any",
|
331 |
)
|
332 |
|
333 |
+
lens_type = gr.Dropdown(
|
334 |
+
choices=["Wide-angle", "Standard", "Telephoto", "Macro", "Fish-eye"],
|
335 |
+
label="Lens Type",
|
336 |
+
visible=False,
|
337 |
+
)
|
338 |
+
|
339 |
+
film_stock = gr.Dropdown(
|
340 |
+
choices=["Kodak Portra", "Fujifilm Velvia", "Ilford Delta", "Kodak Tri-X", "Fujifilm Provia"],
|
341 |
+
label="Film Stock",
|
342 |
+
visible=False,
|
343 |
+
)
|
344 |
+
|
345 |
+
composition_style = gr.Dropdown(
|
346 |
+
choices=["Rule of Thirds", "Golden Ratio", "Symmetry", "Leading Lines", "Framing"],
|
347 |
+
label="Composition Style",
|
348 |
+
visible=False,
|
349 |
+
)
|
350 |
+
|
351 |
+
gr.Markdown("**Note:** Caption tone doesn't affect `rng-tags`, `training_prompt`, and `style_prompt`.")
|
|
|
|
|
|
|
|
|
352 |
|
353 |
run_button = gr.Button("Make My Caption!")
|
354 |
|
355 |
with gr.Column():
|
356 |
+
output_caption = gr.Textbox(label="Generated Caption")
|
357 |
+
copy_button = gr.Button("Copy to Clipboard")
|
358 |
+
|
359 |
+
def update_style_options(caption_type):
|
360 |
+
return {
|
361 |
+
lens_type: gr.update(visible=caption_type == "style_prompt"),
|
362 |
+
film_stock: gr.update(visible=caption_type == "style_prompt"),
|
363 |
+
composition_style: gr.update(visible=caption_type == "style_prompt"),
|
364 |
+
}
|
365 |
+
|
366 |
+
caption_type.change(update_style_options, inputs=[caption_type], outputs=[lens_type, film_stock, composition_style])
|
367 |
+
|
368 |
+
run_button.click(fn=stream_chat, inputs=[input_image, caption_type, caption_tone, caption_length, lens_type, film_stock, composition_style], outputs=[output_caption])
|
369 |
|
370 |
+
def copy_to_clipboard():
|
371 |
+
return None
|
372 |
|
373 |
+
copy_button.click(fn=copy_to_clipboard, inputs=[], outputs=[])
|
374 |
|
375 |
if __name__ == "__main__":
|
376 |
demo.launch()
|