File size: 33,226 Bytes
9d2cfda
 
 
 
 
 
 
 
 
 
 
 
8a73865
 
 
 
 
 
 
9d2cfda
 
da4bc63
9d2cfda
98792a8
9d2cfda
98792a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d2cfda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98792a8
9d2cfda
 
 
 
98792a8
 
 
 
250653b
 
 
98792a8
250653b
98792a8
 
 
 
250653b
 
98792a8
250653b
 
 
98792a8
 
 
 
250653b
 
 
98792a8
 
250653b
 
 
 
 
98792a8
250653b
 
 
 
 
98792a8
 
 
 
 
 
750c9c8
98792a8
56cac7d
 
 
 
98792a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
750c9c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98792a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6923442
98792a8
 
 
9d2cfda
1fb35ef
ab81c3f
90cb93f
 
 
1fb35ef
9c636a2
1fb35ef
90cb93f
 
1fb35ef
 
90cb93f
1fb35ef
90cb93f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fb35ef
 
9d2cfda
98792a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56cac7d
98792a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daee0bb
 
98792a8
 
 
 
 
 
 
 
 
 
 
 
 
 
daee0bb
 
98792a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c636a2
 
654310e
9c636a2
654310e
9c636a2
98792a8
8a73865
1fb35ef
ab81c3f
 
56cac7d
 
58158b1
 
9d2cfda
56cac7d
9d2cfda
56cac7d
9d2cfda
56cac7d
 
9d2cfda
56cac7d
 
 
 
 
 
 
8a73865
f19b97c
 
 
 
 
 
 
 
 
 
 
 
 
654310e
f19b97c
654310e
f19b97c
 
 
 
 
 
b8bf1f2
98792a8
b8bf1f2
98792a8
93ba4f0
 
98792a8
 
 
 
 
 
 
 
 
 
799b4bb
98792a8
 
 
bd55f23
98792a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd55f23
799b4bb
98792a8
 
799b4bb
 
98792a8
 
799b4bb
 
 
 
 
98792a8
799b4bb
 
 
 
 
 
98792a8
799b4bb
 
 
98792a8
 
 
 
56cac7d
98792a8
4d5057e
98792a8
 
da4bc63
98792a8
da4bc63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98792a8
 
da4bc63
 
 
98792a8
56cac7d
 
 
 
 
 
 
 
 
 
 
 
799b4bb
f19b97c
 
 
 
 
ed82c48
9d2cfda
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
import spaces
import gradio as gr
from huggingface_hub import InferenceClient
from torch import nn
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
from pathlib import Path
import torch
import torch.amp.autocast_mode
from PIL import Image
import os
import torchvision.transforms.functional as TVF

from dotenv import load_dotenv

# Load environment variables from .env file
load_dotenv()

USERNAME = os.getenv("USERNAME")
PASSWORD = os.getenv("PASSWORD")

CLIP_PATH = "google/siglip-so400m-patch14-384"
MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B"
CHECKPOINT_PATH = Path("9em124t2-499968")
TITLE = "<h1><center>JoyCaption Alpha One (2024-09-20a)</center></h1>"
CAPTION_TYPE_MAP = {
	("descriptive", "formal", False, False): ["Write a descriptive caption for this image in a formal tone."],
	("descriptive", "formal", False, True): ["Write a descriptive caption for this image in a formal tone within {word_count} words."],
	("descriptive", "formal", True, False): ["Write a {length} descriptive caption for this image in a formal tone."],
	("descriptive", "informal", False, False): ["Write a descriptive caption for this image in a casual tone."],
	("descriptive", "informal", False, True): ["Write a descriptive caption for this image in a casual tone within {word_count} words."],
	("descriptive", "informal", True, False): ["Write a {length} descriptive caption for this image in a casual tone."],

	("training_prompt", "formal", False, False): ["Write a stable diffusion prompt for this image."],
	("training_prompt", "formal", False, True): ["Write a stable diffusion prompt for this image within {word_count} words."],
	("training_prompt", "formal", True, False): ["Write a {length} stable diffusion prompt for this image."],

	("rng-tags", "formal", False, False): ["Write a list of Booru tags for this image."],
	("rng-tags", "formal", False, True): ["Write a list of Booru tags for this image within {word_count} words."],
	("rng-tags", "formal", True, False): ["Write a {length} list of Booru tags for this image."],

	("style_prompt", "formal", False, False): ["Generate a detailed style prompt for this image, including lens type, film stock, composition notes, lighting aspects, and any special photographic techniques."],
	("style_prompt", "formal", False, True): ["Generate a detailed style prompt for this image within {word_count} words, including lens type, film stock, composition notes, lighting aspects, and any special photographic techniques."],
	("style_prompt", "formal", True, False): ["Generate a {length} detailed style prompt for this image, including lens type, film stock, composition notes, lighting aspects, and any special photographic techniques."],
}

HF_TOKEN = os.environ.get("HF_TOKEN", None)


class ImageAdapter(nn.Module):
	def __init__(self, input_features: int, output_features: int, ln1: bool, pos_emb: bool, num_image_tokens: int, deep_extract: bool):
		super().__init__()
		self.deep_extract = deep_extract

		if self.deep_extract:
			input_features = input_features * 5

		self.linear1 = nn.Linear(input_features, output_features)
		self.activation = nn.GELU()
		self.linear2 = nn.Linear(output_features, output_features)
		self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)
		self.pos_emb = None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features))

		# Mode token
		#self.mode_token = nn.Embedding(n_modes, output_features)
		#self.mode_token.weight.data.normal_(mean=0.0, std=0.02)   # Matches HF's implementation of llama3

		# Other tokens (<|image_start|>, <|image_end|>, <|eot_id|>)
		self.other_tokens = nn.Embedding(3, output_features)
		self.other_tokens.weight.data.normal_(mean=0.0, std=0.02)   # Matches HF's implementation of llama3

	def forward(self, vision_outputs: torch.Tensor):
		if self.deep_extract:
			x = torch.concat((
				vision_outputs[-2],
				vision_outputs[3],
				vision_outputs[7],
				vision_outputs[13],
				vision_outputs[20],
			), dim=-1)
			assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}"  # batch, tokens, features
			assert x.shape[-1] == vision_outputs[-2].shape[-1] * 5, f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}"
		else:
			x = vision_outputs[-2]

		x = self.ln1(x)

		if self.pos_emb is not None:
			assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}"
			x = x + self.pos_emb

		x = self.linear1(x)
		x = self.activation(x)
		x = self.linear2(x)

		# Mode token
		#mode_token = self.mode_token(mode)
		#assert mode_token.shape == (x.shape[0], mode_token.shape[1], x.shape[2]), f"Expected {(x.shape[0], 1, x.shape[2])}, got {mode_token.shape}"
		#x = torch.cat((x, mode_token), dim=1)

		# <|image_start|>, IMAGE, <|image_end|>
		other_tokens = self.other_tokens(torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1))
		assert other_tokens.shape == (x.shape[0], 2, x.shape[2]), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}"
		x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)

		return x

	def get_eot_embedding(self):
		return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0)



# Load CLIP
print("Loading CLIP")
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
clip_model = AutoModel.from_pretrained(CLIP_PATH)
clip_model = clip_model.vision_model

if (CHECKPOINT_PATH / "clip_model.pt").exists():
	print("Loading VLM's custom vision model")
	checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location='cpu')
	checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()}
	clip_model.load_state_dict(checkpoint)
	del checkpoint

clip_model.eval()
clip_model.requires_grad_(False)
clip_model.to("cuda")


# Tokenizer
print("Loading tokenizer")
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"

# LLM
print("Loading LLM")
if (CHECKPOINT_PATH / "text_model").exists:
	print("Loading VLM's custom text model")
	text_model = AutoModelForCausalLM.from_pretrained(CHECKPOINT_PATH / "text_model", device_map=0, torch_dtype=torch.bfloat16)
else:
	text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16)

text_model.eval()

# Image Adapter
print("Loading image adapter")
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size, False, False, 38, False)
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=True))
image_adapter.eval()
image_adapter.to("cuda")


def preprocess_image(input_image: Image.Image) -> torch.Tensor:
    """
    Preprocess the input image for the CLIP model.
    """
    image = input_image.resize((384, 384), Image.LANCZOS)
    pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
    pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
    return pixel_values.to('cuda')

def generate_caption(text_model, tokenizer, image_features, prompt_str: str, max_new_tokens: int = 300) -> str:
    """
    Generate a caption based on the image features and prompt.
    """
    prompt = tokenizer.encode(prompt_str, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)
    prompt_embeds = text_model.model.embed_tokens(prompt.to('cuda'))
    embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))
    eot_embed = image_adapter.get_eot_embedding().unsqueeze(0).to(dtype=text_model.dtype)

    inputs_embeds = torch.cat([
        embedded_bos.expand(image_features.shape[0], -1, -1),
        image_features.to(dtype=embedded_bos.dtype),
        prompt_embeds.expand(image_features.shape[0], -1, -1),
        eot_embed.expand(image_features.shape[0], -1, -1),
    ], dim=1)

    input_ids = torch.cat([
        torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
        torch.zeros((1, image_features.shape[1]), dtype=torch.long),
        prompt,
        torch.tensor([[tokenizer.convert_tokens_to_ids("<|eot_id|>")]], dtype=torch.long),
    ], dim=1).to('cuda')
    attention_mask = torch.ones_like(input_ids)

    generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=max_new_tokens, do_sample=True, suppress_tokens=None)

    generate_ids = generate_ids[:, input_ids.shape[1]:]
    if generate_ids[0][-1] == tokenizer.eos_token_id or generate_ids[0][-1] == tokenizer.convert_tokens_to_ids("<|eot_id|>"):
        generate_ids = generate_ids[:, :-1]

    return tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0].strip()

@spaces.GPU()
@torch.no_grad()
def stream_chat(input_image: Image.Image, caption_type: str, caption_tone: str, caption_length: str | int, lens_type: str = "", film_stock: str = "", composition_style: str = "", lighting_aspect: str = "", special_technique: str = "", color_effect: str = "") -> str:
    """
    Generate a caption, training prompt, tags, or a style prompt for image generation based on the input image and parameters.
    """
    # Check if an image has been uploaded
    if input_image is None:
        return "Error: Please upload an image before generating a caption."

    torch.cuda.empty_cache()

    try:
        length = None if caption_length == "any" else caption_length
        if isinstance(length, str):
            length = int(length)
    except ValueError:
        raise ValueError(f"Invalid caption length: {caption_length}")

    if caption_type in ["rng-tags", "training_prompt", "style_prompt"]:
        caption_tone = "formal"

    prompt_key = (caption_type, caption_tone, isinstance(length, str), isinstance(length, int))
    if prompt_key not in CAPTION_TYPE_MAP:
        raise ValueError(f"Invalid caption type: {prompt_key}")

    if caption_type == "style_prompt":
        # For style prompt, we'll create a custom prompt for the LLM
        base_prompt = "Analyze the given image and create a detailed Stable Diffusion prompt for generating a new, creative image inspired by it. "
        base_prompt += "The prompt should describe the main elements, style, and mood of the image, "
        base_prompt += "but also introduce creative variations or enhancements. "
        base_prompt += "Include specific details about the composition, lighting, and overall atmosphere. "
        
        # Add custom settings to the prompt
        if lens_type:
            lens_type_key = lens_type.split(":")[0].strip()
            base_prompt += f"Incorporate the effect of a {lens_type_key} lens ({lens_types_info[lens_type_key]}). "
        if film_stock:
            film_stock_key = film_stock.split(":")[0].strip()
            base_prompt += f"Apply the characteristics of {film_stock_key} film stock ({film_stocks_info[film_stock_key]}). "
        if composition_style:
            composition_style_key = composition_style.split(":")[0].strip()
            base_prompt += f"Use a {composition_style_key} composition style ({composition_styles_info[composition_style_key]}). "
        if lighting_aspect:
            lighting_aspect_key = lighting_aspect.split(":")[0].strip()
            base_prompt += f"Implement {lighting_aspect_key} lighting ({lighting_aspects_info[lighting_aspect_key]}). "
        if special_technique:
            special_technique_key = special_technique.split(":")[0].strip()
            base_prompt += f"Apply the {special_technique_key} technique ({special_techniques_info[special_technique_key]}). "
        if color_effect:
            color_effect_key = color_effect.split(":")[0].strip()
            base_prompt += f"Use a {color_effect_key} color effect ({color_effects_info[color_effect_key]}). "
        
        base_prompt += f"The final prompt should be approximately {length} words long. "
        base_prompt += "Format the output as a single paragraph without numbering or bullet points."

        prompt_str = base_prompt
    else:
        prompt_str = CAPTION_TYPE_MAP[prompt_key][0].format(length=length, word_count=length)

    # Debugging: Print the constructed prompt string
    print(f"Constructed Prompt: {prompt_str}")

    pixel_values = preprocess_image(input_image)

    with torch.amp.autocast_mode.autocast('cuda', enabled=True):
        vision_outputs = clip_model(pixel_values=pixel_values, output_hidden_states=True)
        image_features = vision_outputs.hidden_states
        embedded_images = image_adapter(image_features)
        embedded_images = embedded_images.to('cuda')

    # Load the model from MODEL_PATH
    text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16)
    text_model.eval()

    # Debugging: Print the prompt string before passing to generate_caption
    print(f"Prompt passed to generate_caption: {prompt_str}")

    caption = generate_caption(text_model, tokenizer, embedded_images, prompt_str)

    return caption

css = """
h1, h2, h3, h4, h5, h6, p, li, ul, ol, a {
    text-align: left;
}
.centered-image {
    display: block;
    margin-left: auto;
    margin-right: auto;
    max-width: 100%;
    height: auto;
}
ul, ol {
    padding-left: 20px;
}
.gradio-container {
    max-width: 100% !important;
    padding: 0 !important;
}
.gradio-row {
    margin-left: 0 !important;
    margin-right: 0 !important;
}
.gradio-column {
    padding-left: 0 !important;
    padding-right: 0 !important;
}
/* Left-align dropdown text */
.gradio-dropdown > div {
    text-align: left !important;
}
/* Left-align checkbox labels */
.gradio-checkbox label {
    text-align: left !important;
}
/* Left-align radio button labels */
.gradio-radio label {
    text-align: left !important;
}
"""

# Add detailed descriptions for each option
lens_types_info = {
    "Standard": "A versatile lens with a field of view similar to human vision.",
    "Wide-angle": "Captures a wider field of view, great for landscapes and architecture. Applies moderate to strong lens effect with image warp.",
    "Telephoto": "Used for distant subjects, gives an 'award-winning' or 'National Geographic' look. Creates interesting effects when prompted.",
    "Macro": "For extreme close-up photography, revealing tiny details.",
    "Fish-eye": "Ultra-wide-angle lens that creates a strong bubble-like distortion. Generates panoramic photos with the entire image warping into a bubble.",
    "Tilt-shift": "Allows adjusting the plane of focus, creating a 'miniature' effect. Known for the 'diorama miniature look'.",
    "Zoom lens": "Variable focal length lens. Often zooms in on the subject, perfect for creating a base for inpainting. Interesting effect on landscapes with motion blur.",
    "GoPro": "Wide-angle lens with clean digital look. Excludes film grain and most filter effects, resulting in natural colors and regular saturation.",
    "Pinhole camera": "Creates a unique, foggy, low-detail, historic photograph look. Used since the 1850s, with peak popularity in the 1930s."
}

film_stocks_info = {
    "Kodak Portra": "Professional color negative film known for its natural skin tones and low contrast.",
    "Fujifilm Velvia": "Slide film known for vibrant colors and high saturation, popular among landscape photographers.",
    "Ilford Delta": "Black and white film known for its fine grain and high sharpness.",
    "Kodak Tri-X": "Classic high-speed black and white film, known for its distinctive grain and wide exposure latitude.",
    "Fujifilm Provia": "Color reversal film known for its natural color reproduction and fine grain.",
    "Cinestill": "Color photos with fine/low grain and higher than average resolution. Colors are slightly oversaturated or slightly desaturated.",
    "Ektachrome": "Color photos with fine/low to moderate grain. Colors on the colder part of spectrum or regular, with normal or slightly higher saturation.",
    "Ektar": "Modern Kodak film. Color photos with little to no grain. Results look like regular modern photography with artistic angles.",
    "Film Washi": "Mostly black and white photos with fine/low to moderate grain. Occasionally gives colored photos with low saturation. Distinct style with high black contrast and soft camera lens effect.",
    "Fomapan": "Black and white photos with fine/low to moderate grain, highly artistic exposure and angles. Adds very soft lens effect without distortion, dark photo vignette.",
    "Fujicolor": "Color photos with fine/low to moderate grain. Colors are either very oversaturated or slightly desaturated, with entire color hue shifted in a very distinct manner.",
    "Holga": "Color photos with high grain. Colors are either very oversaturated or slightly desaturated. Distinct contrast of black. Often applies photographic vignette.",
    "Instax": "Instant color photos similar to Polaroid but clearer. Near perfect colors, regular saturation, fine/low to medium grain.",
    "Lomography": "Color photos with high grain. Colors are either very oversaturated or slightly desaturated. Distinct contrast of black. Often applies photographic vignette.",
    "Kodachrome": "Color photos with moderate grain. Colors on either colder part of spectrum or regular, with normal or slightly higher saturation.",
    "Rollei": "Mostly black and white photos, sometimes color with fine/low grain. Can be sepia colored or have unusual hues and desaturation. Great for landscapes."
}

composition_styles_info = {
    "Rule of Thirds": "Divides the frame into a 3x3 grid, placing key elements along the lines or at their intersections.",
    "Golden Ratio": "Uses a spiral based on the golden ratio to create a balanced and aesthetically pleasing composition.",
    "Symmetry": "Creates a mirror-like balance in the image, often used for architectural or nature photography.",
    "Leading Lines": "Uses lines within the frame to draw the viewer's eye to the main subject or through the image.",
    "Framing": "Uses elements within the scene to create a frame around the main subject.",
    "Minimalism": "Simplifies the composition to its essential elements, often with a lot of negative space.",
    "Fill the Frame": "The main subject dominates the entire frame, leaving little to no background.",
    "Negative Space": "Uses empty space around the subject to create a sense of simplicity or isolation.",
    "Centered Composition": "Places the main subject in the center of the frame, creating a sense of stability or importance.",
    "Diagonal Lines": "Uses diagonal elements to create a sense of movement or dynamic tension in the image.",
    "Triangular Composition": "Arranges elements in the frame to form a triangle, creating a sense of stability and harmony.",
    "Radial Balance": "Arranges elements in a circular pattern around a central point, creating a sense of movement or completeness."
}

lighting_aspects_info = {
    "Natural light": "Uses available light from the sun or sky, often creating soft, even illumination.",
    "Studio lighting": "Controlled artificial lighting setup, allowing for precise manipulation of light and shadow.",
    "Back light": "Light source behind the subject, creating silhouettes or rim lighting effects.",
    "Split light": "Strong light source at 90-degree angle, lighting one half of the subject while leaving the other in shadow.",
    "Broad light": "Light source at an angle to the subject, producing well-lit photographs with soft to moderate shadows.",
    "Dim light": "Weak or distant light source, creating lower than average brightness and often dramatic images.",
    "Flash photography": "Uses a brief, intense burst of light. Can be fill flash (even lighting) or harsh flash (strong contrasts).",
    "Sunlight": "Direct light from the sun, often creating strong contrasts and warm tones.",
    "Moonlight": "Soft, cool light from the moon, often creating a mysterious or romantic atmosphere.",
    "Spotlight": "Focused beam of light illuminating a specific area, creating high contrast between light and shadow.",
    "High-key lighting": "Bright, even lighting with minimal shadows, creating a light and airy feel.",
    "Low-key lighting": "Predominantly dark tones with selective lighting, creating a moody or dramatic atmosphere.",
    "Rembrandt lighting": "Classic portrait lighting technique creating a triangle of light on the cheek of the subject."
}

special_techniques_info = {
    "Double exposure": "Superimposes two exposures to create a single image, often resulting in a dreamy or surreal effect.",
    "Long exposure": "Uses a long shutter speed to capture motion over time, often creating smooth, blurred effects for moving elements.",
    "Multiple exposure": "Superimposes multiple exposures, multiplying the subject or its key elements across the image.",
    "HDR": "High Dynamic Range imaging, combining multiple exposures to capture a wider range of light and dark tones.",
    "Bokeh effect": "Creates a soft, out-of-focus background, often with circular highlights.",
    "Silhouette": "Captures the outline of a subject against a brighter background, creating a dramatic contrast.",
    "Panning": "Follows a moving subject with the camera, creating a sharp subject with a blurred background.",
    "Light painting": "Uses long exposure and moving light sources to 'paint' with light in the image.",
    "Infrared photography": "Captures light in the infrared spectrum, often resulting in surreal, otherworldly images.",
    "Ultraviolet photography": "Captures light in the ultraviolet spectrum, often revealing hidden patterns or creating a strong violet glow.",
    "Kirlian photography": "High-voltage photographic technique that captures corona discharges around objects, creating a glowing effect.",
    "Thermography": "Captures infrared radiation to create images based on temperature differences, resulting in false-color heat maps.",
    "Astrophotography": "Specialized technique for capturing astronomical objects and celestial events, often resulting in stunning starry backgrounds.",
    "Underwater photography": "Captures images beneath the surface of water, often in pools, seas, or aquariums.",
    "Aerial photography": "Captures images from an elevated position, such as from drones, helicopters, or planes.",
    "Macro photography": "Extreme close-up photography, revealing tiny details not visible to the naked eye."
}

color_effects_info = {
    "Black and white": "Removes all color, leaving only shades of gray.",
    "Sepia": "Reddish-brown monochrome effect, often associated with vintage photography.",
    "Monochrome": "Uses variations of a single color.",
    "Vintage color": "Muted or faded color palette reminiscent of old photographs.",
    "Cross-processed": "Deliberate processing of film in the wrong chemicals, creating unusual color shifts.",
    "Desaturated": "Reduces the intensity of all colors in the image.",
    "Vivid colors": "Increases the saturation and intensity of colors.",
    "Pastel colors": "Soft, pale colors with a light and airy feel.",
    "High contrast": "Emphasizes the difference between light and dark areas in the image.",
    "Low contrast": "Reduces the difference between light and dark areas, creating a softer look.",
    "Color splash": "Converts most of the image to black and white while leaving one or more elements in color."
}

def get_dropdown_choices(info_dict):
    return [f"{key}: {value}" for key, value in info_dict.items()]

def login(username, password):
    if username == USERNAME and password == PASSWORD:
        return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(value="Login successful! You can now access the Caption Captain tab.", visible=True)
    else:
        return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(value="Invalid username or password. Please try again.", visible=True)

# Gradio interface
with gr.Blocks(theme="Hev832/Applio", css=css, fill_width=True, fill_height=True) as demo:
    with gr.Tab("Welcome"):
        with gr.Row():
            with gr.Column(scale=2): 
                gr.Markdown(
                    """

                    <img src="https://cdn-uploads.huggingface.co/production/uploads/64740cf7485a7c8e1bd51ac9/gW2pkMIzSg0REqju2nHsB.png" alt="UDG" alt="UGD Logo" width="250" class="centered-image">

                    # 🎨 Underground Digital's Caption Captain: AI-Powered Art Inspiration

                    ## Accelerate Your Creative Workflow with Intelligent Image Analysis

                    This innovative tool empowers Yamamoto's artists to quickly generate descriptive captions,<br>
                    training prompts, and tags from existing artwork, fueling the creative process for GenAI models.

                    ## 🚀 How It Works:
                    1. **Upload Your Inspiration**: Drop in an image (e.g., a charcoal horse picture) that embodies your desired style.
                    2. **Choose Your Output**: Select from descriptive captions, training prompts, or tags.
                    3. **Customize the Results**: Adjust tone, length, and other parameters to fine-tune the output.
                    4. **Generate and Iterate**: Click 'Caption' to analyze your image and use the results to inspire new creations.
                    """
                )

            with gr.Column(scale=1):
                with gr.Row():
                    gr.Markdown(
                        """
                        Login below using the internal<br>
                        username and password to access the full app.<br>
                        
                        Once logged in, a new tab will appear named<br>
                        "Caption Captain" allowing you to access the app.
                        """
                    )

                with gr.Row():
                    username = gr.Textbox(label="Username", placeholder="Enter your username", value="ugd")
                with gr.Row():
                    password = gr.Textbox(label="Password", type="password", placeholder="Enter your password", value="ugd!")
                with gr.Row():
                    login_button = gr.Button("Login", size="sm")
                login_message = gr.Markdown(visible=False)

    caption_captain_tab = gr.Tab("Caption Captain", visible=False)
    with caption_captain_tab:
        with gr.Accordion("How to Use Caption Captain", open=False):
            gr.Markdown("""
            # How to Use Caption Captain

            <img src="https://cdn-uploads.huggingface.co/production/uploads/64740cf7485a7c8e1bd51ac9/sDjwwSS4L_atPLP_H5Glv.png" alt="Captain" width="100" style="max-width: 100%; height: auto;">
            
            Hello, artist! Let's make some fun captions for your pictures. Here's how:

            1. **Pick a Picture**: Find a cool picture you want to talk about and upload it.

            2. **Choose What You Want**: 
               - **Caption Type**: 
                 * "Descriptive" tells you what's in the picture
                 * "Training Prompt" helps computers make similar pictures
                 * "RNG-Tags" gives you short words about the picture
                 * "Style Prompt" creates detailed prompts for image generation

            3. **Pick a Style** (for "Descriptive" and "Style Prompt" only):
               - "Formal" sounds like a teacher talking
               - "Informal" sounds like a friend chatting

            4. **Decide How Long**:
               - "Any" lets the computer decide
               - Or pick a size from "very short" to "very long"
               - You can even choose a specific number of words!

            5. **Advanced Options** (for "Style Prompt" only):
               - Choose lens type, film stock, composition, and lighting details

            6. **Make the Caption**: Click the "Make My Caption!" button and watch the magic happen!

            Remember, have fun and be creative with your captions!

            ## Tips for Great Captions:
            - Try different types to see what you like best
            - Experiment with formal and informal tones for fun variations
            - Adjust the length to get just the right amount of detail
            - For "Style Prompt", play with the advanced options for more specific results
            - If you don't like a caption, just click "Make My Caption!" again for a new one
            
            Have a great time captioning your art!
            """)

        with gr.Row():
            with gr.Column():
                input_image = gr.Image(type="pil", label="Input Image")

                caption_type = gr.Dropdown(
                    choices=["descriptive", "training_prompt", "rng-tags", "style_prompt"],
                    label="Caption Type",
                    value="descriptive",
                )

                caption_tone = gr.Dropdown(
                    choices=["formal", "informal"],
                    label="Caption Tone",
                    value="formal",
                )

                caption_length = gr.Dropdown(
                    choices=["any", "very short", "short", "medium-length", "long", "very long"] +
                            [str(i) for i in range(20, 261, 10)],
                    label="Caption Length",
                    value="any",
                )

                gr.Markdown("**Note:** Caption tone doesn't affect `rng-tags`, `training_prompt`, and `style_prompt`.")

                
            with gr.Column():
                error_message = gr.Markdown(visible=False)  # Add this line
                output_caption = gr.Textbox(label="Generated Caption")
                run_button = gr.Button("Make My Caption!")

                # Container for advanced options
                with gr.Column(visible=False) as advanced_options:
                    gr.Markdown("### Advanced Options for Style Prompt")
                    lens_type = gr.Dropdown(
                        choices=get_dropdown_choices(lens_types_info),
                        label="Lens Type",
                        info="Select a lens type to define the perspective and field of view of the image."
                    )
                    film_stock = gr.Dropdown(
                        choices=get_dropdown_choices(film_stocks_info),
                        label="Film Stock",
                        info="Choose a film stock to determine the color, grain, and overall look of the image."
                    )
                    composition_style = gr.Dropdown(
                        choices=get_dropdown_choices(composition_styles_info),
                        label="Composition Style",
                        info="Select a composition style to guide the arrangement of elements in the image."
                    )
                    lighting_aspect = gr.Dropdown(
                        choices=get_dropdown_choices(lighting_aspects_info),
                        label="Lighting Aspect",
                        info="Choose a lighting style to define the mood and atmosphere of the image."
                    )
                    special_technique = gr.Dropdown(
                        choices=get_dropdown_choices(special_techniques_info),
                        label="Special Technique",
                        info="Select a special photographic technique to add unique effects to the image."
                    )
                    color_effect = gr.Dropdown(
                        choices=get_dropdown_choices(color_effects_info),
                        label="Color Effect",
                        info="Choose a color effect to alter the overall color palette of the image."
                    )

    def update_style_options(caption_type):
        return gr.update(visible=caption_type == "style_prompt")

    caption_type.change(update_style_options, inputs=[caption_type], outputs=[advanced_options])
    
    def process_and_handle_errors(input_image, caption_type, caption_tone, caption_length, lens_type, film_stock, composition_style, lighting_aspect, special_technique, color_effect):
        try:
            result = stream_chat(input_image, caption_type, caption_tone, caption_length, lens_type, film_stock, composition_style, lighting_aspect, special_technique, color_effect)
            return gr.update(visible=False), result
        except Exception as e:
            return gr.update(visible=True, value=f"Error: {str(e)}"), ""

    run_button.click(
        fn=process_and_handle_errors,
        inputs=[input_image, caption_type, caption_tone, caption_length, lens_type, film_stock, composition_style, lighting_aspect, special_technique, color_effect],
        outputs=[error_message, output_caption]
    )

    login_button.click(
        login,
        inputs=[username, password],
        outputs=[caption_captain_tab, username, password, login_message]
    )

if __name__ == "__main__":
    demo.launch()