Uhhy commited on
Commit
aa1f0a9
·
verified ·
1 Parent(s): b7a96e3

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +79 -0
app.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, HTTPException
2
+ from pydantic import BaseModel
3
+ from llama_cpp import Llama
4
+ from multiprocessing import Process, Queue
5
+ import uvicorn
6
+ from dotenv import load_dotenv
7
+ from difflib import SequenceMatcher
8
+
9
+ load_dotenv()
10
+
11
+ app = FastAPI()
12
+
13
+ models = [
14
+ {"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf"},
15
+ {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf"},
16
+ {"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf"},
17
+ {"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf"},
18
+ ]
19
+
20
+ llms = []
21
+ for model in models:
22
+ llm = Llama.from_pretrained(repo_id=model['repo_id'], filename=model['filename'])
23
+ llms.append(llm)
24
+
25
+ class ChatRequest(BaseModel):
26
+ message: str
27
+ top_k: int = 50
28
+ top_p: float = 0.95
29
+ temperature: float = 0.7
30
+
31
+ def generate_chat_response(request, queue):
32
+ try:
33
+ user_input = request.message
34
+ responses = []
35
+ for llm in llms:
36
+ response = llm.create_chat_completion(
37
+ messages=[{"role": "user", "content": user_input}],
38
+ top_k=request.top_k,
39
+ top_p=request.top_p,
40
+ temperature=request.temperature
41
+ )
42
+ reply = response['choices'][0]['message']['content']
43
+ responses.append(reply)
44
+ best_response = select_best_response(responses, request)
45
+ queue.put(best_response)
46
+ except Exception as e:
47
+ queue.put(f"Error: {str(e)}")
48
+
49
+ def select_best_response(responses, request):
50
+ coherent_responses = filter_by_coherence(responses, request)
51
+ best_response = filter_by_similarity(coherent_responses)
52
+ return best_response
53
+
54
+ def filter_by_coherence(responses, request):
55
+ return responses
56
+
57
+ def filter_by_similarity(responses):
58
+ responses.sort(key=len, reverse=True)
59
+ best_response = responses[0]
60
+ for i in range(1, len(responses)):
61
+ ratio = SequenceMatcher(None, best_response, responses[i]).ratio()
62
+ if ratio < 0.9:
63
+ best_response = responses[i]
64
+ break
65
+ return best_response
66
+
67
+ @app.post("/generate_chat")
68
+ async def generate_chat(request: ChatRequest):
69
+ queue = Queue()
70
+ p = Process(target=generate_chat_response, args=(request, queue))
71
+ p.start()
72
+ p.join()
73
+ response = queue.get()
74
+ if "Error" in response:
75
+ raise HTTPException(status_code=500, detail=response)
76
+ return {"response": response}
77
+
78
+ if __name__ == "__main__":
79
+ uvicorn.run(app, host="0.0.0.0", port=8001)