Spaces:
Runtime error
Runtime error
paragon-analytics
commited on
Commit
Β·
9cc7c4e
1
Parent(s):
f1c8fb6
Update app.py
Browse files
app.py
CHANGED
@@ -12,14 +12,29 @@ from transformers import TFAutoModelForSequenceClassification
|
|
12 |
from transformers import AutoTokenizer
|
13 |
from transformers_interpret import SequenceClassificationExplainer
|
14 |
|
|
|
|
|
15 |
tokenizer = AutoTokenizer.from_pretrained("paragon-analytics/ADRv1")
|
16 |
-
model = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# modelc = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1").cuda
|
18 |
|
19 |
|
20 |
-
cls_explainer = SequenceClassificationExplainer(
|
21 |
-
|
22 |
-
|
23 |
|
24 |
# # define a prediction function
|
25 |
# def f(x):
|
@@ -42,26 +57,26 @@ def adr_predict(x):
|
|
42 |
# shap_values = explainer([x])
|
43 |
# shap_plot = shap.plots.text(shap_values)
|
44 |
|
45 |
-
word_attributions = cls_explainer(str(x))
|
46 |
-
# scores = list(zip(shap_values.data[0], shap_values.values[0, :, 1]))
|
47 |
-
letter = []
|
48 |
-
score = []
|
49 |
-
for i in word_attributions:
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
|
61 |
-
|
62 |
-
|
63 |
|
64 |
-
word_attributions = [(letter[i], score[i]) for i in range(0, len(letter))]
|
65 |
|
66 |
# # SHAP:
|
67 |
# # build an explainer using a token masker
|
@@ -70,10 +85,11 @@ def adr_predict(x):
|
|
70 |
# scores = list(zip(shap_values.data[0], shap_values.values[0, :, 1]))
|
71 |
# # plot the first sentence's explanation
|
72 |
# # plt = shap.plots.text(shap_values[0],display=False)
|
|
|
73 |
|
74 |
|
75 |
-
return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])},
|
76 |
-
# ,scores
|
77 |
|
78 |
def main(text):
|
79 |
text = str(text).lower()
|
@@ -100,25 +116,27 @@ with gr.Blocks(title=title) as demo:
|
|
100 |
# color_map={"+++": "royalblue","++": "cornflowerblue",
|
101 |
# "+": "lightsteelblue", "NA":"white"})
|
102 |
# NER = gr.HTML(label = 'NER:')
|
103 |
-
intp = gr.HighlightedText(label="Word Scores",
|
104 |
-
combine_adjacent=False).style(color_map={"++": "darkred","+": "red",
|
105 |
-
|
106 |
-
|
107 |
|
108 |
-
|
109 |
|
110 |
|
111 |
submit_btn.click(
|
112 |
main,
|
113 |
[text],
|
114 |
-
[label
|
115 |
-
# ,
|
|
|
116 |
], api_name="adr"
|
117 |
)
|
118 |
|
119 |
gr.Markdown("### Click on any of the examples below to see to what extent they contain resilience messaging:")
|
120 |
-
gr.Examples([["I have minor pain."],["I have severe pain."]], [text], [label
|
121 |
-
# ,
|
|
|
122 |
], main, cache_examples=True)
|
123 |
|
124 |
demo.launch()
|
|
|
12 |
from transformers import AutoTokenizer
|
13 |
from transformers_interpret import SequenceClassificationExplainer
|
14 |
|
15 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
16 |
+
|
17 |
tokenizer = AutoTokenizer.from_pretrained("paragon-analytics/ADRv1")
|
18 |
+
model = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1").to(device)
|
19 |
+
|
20 |
+
# build a pipeline object to do predictions
|
21 |
+
pred = transformers.pipeline("text-classification", model=model,
|
22 |
+
tokenizer=tokenizer, return_all_scores=True)
|
23 |
+
|
24 |
+
|
25 |
+
def interpretation_function(text):
|
26 |
+
explainer = shap.Explainer(pred)
|
27 |
+
shap_values = explainer([text])
|
28 |
+
scores = list(zip(shap_values.data[0], shap_values.values[0, :, 1]))
|
29 |
+
return scores
|
30 |
+
|
31 |
+
# model = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1")
|
32 |
# modelc = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1").cuda
|
33 |
|
34 |
|
35 |
+
# cls_explainer = SequenceClassificationExplainer(
|
36 |
+
# model,
|
37 |
+
# tokenizer)
|
38 |
|
39 |
# # define a prediction function
|
40 |
# def f(x):
|
|
|
57 |
# shap_values = explainer([x])
|
58 |
# shap_plot = shap.plots.text(shap_values)
|
59 |
|
60 |
+
# word_attributions = cls_explainer(str(x))
|
61 |
+
# # scores = list(zip(shap_values.data[0], shap_values.values[0, :, 1]))
|
62 |
+
# letter = []
|
63 |
+
# score = []
|
64 |
+
# for i in word_attributions:
|
65 |
+
# if i[1]>0.5:
|
66 |
+
# a = "++"
|
67 |
+
# elif (i[1]<=0.5) and (i[1]>0.1):
|
68 |
+
# a = "+"
|
69 |
+
# elif (i[1]>=-0.5) and (i[1]<-0.1):
|
70 |
+
# a = "-"
|
71 |
+
# elif i[1]<-0.5:
|
72 |
+
# a = "--"
|
73 |
+
# else:
|
74 |
+
# a = "NA"
|
75 |
|
76 |
+
# letter.append(i[0])
|
77 |
+
# score.append(a)
|
78 |
|
79 |
+
# word_attributions = [(letter[i], score[i]) for i in range(0, len(letter))]
|
80 |
|
81 |
# # SHAP:
|
82 |
# # build an explainer using a token masker
|
|
|
85 |
# scores = list(zip(shap_values.data[0], shap_values.values[0, :, 1]))
|
86 |
# # plot the first sentence's explanation
|
87 |
# # plt = shap.plots.text(shap_values[0],display=False)
|
88 |
+
shap_scores = interpretation_function(str(x).lower())
|
89 |
|
90 |
|
91 |
+
return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, shap_scores
|
92 |
+
# , word_attributions ,scores
|
93 |
|
94 |
def main(text):
|
95 |
text = str(text).lower()
|
|
|
116 |
# color_map={"+++": "royalblue","++": "cornflowerblue",
|
117 |
# "+": "lightsteelblue", "NA":"white"})
|
118 |
# NER = gr.HTML(label = 'NER:')
|
119 |
+
# intp = gr.HighlightedText(label="Word Scores",
|
120 |
+
# combine_adjacent=False).style(color_map={"++": "darkred","+": "red",
|
121 |
+
# "--": "darkblue",
|
122 |
+
# "-": "blue", "NA":"white"})
|
123 |
|
124 |
+
interpretation = gr.components.Interpretation(text)
|
125 |
|
126 |
|
127 |
submit_btn.click(
|
128 |
main,
|
129 |
[text],
|
130 |
+
[label
|
131 |
+
# ,intp
|
132 |
+
,interpretation
|
133 |
], api_name="adr"
|
134 |
)
|
135 |
|
136 |
gr.Markdown("### Click on any of the examples below to see to what extent they contain resilience messaging:")
|
137 |
+
gr.Examples([["I have minor pain."],["I have severe pain."]], [text], [label
|
138 |
+
# ,intp
|
139 |
+
,interpretation
|
140 |
], main, cache_examples=True)
|
141 |
|
142 |
demo.launch()
|