This view is limited to 50 files because it contains too many changes.Β  See the raw diff here.
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. Control-Color/CtrlColor_environ.yaml +40 -0
  3. Control-Color/annotator/__pycache__/util.cpython-38.pyc +0 -0
  4. Control-Color/annotator/util.py +40 -0
  5. Control-Color/app.py +524 -0
  6. Control-Color/cldm/__pycache__/cldm.cpython-38.pyc +0 -0
  7. Control-Color/cldm/__pycache__/ddim_haced_sag_step.cpython-38.pyc +0 -0
  8. Control-Color/cldm/__pycache__/hack.cpython-310.pyc +0 -0
  9. Control-Color/cldm/__pycache__/hack.cpython-38.pyc +0 -0
  10. Control-Color/cldm/__pycache__/model.cpython-38.pyc +0 -0
  11. Control-Color/cldm/cldm.py +547 -0
  12. Control-Color/cldm/ddim_haced_sag_step.py +494 -0
  13. Control-Color/cldm/ddim_hacked_sag.py +543 -0
  14. Control-Color/cldm/hack.py +111 -0
  15. Control-Color/cldm/model.py +28 -0
  16. Control-Color/config.py +1 -0
  17. Control-Color/ldm/__pycache__/util.cpython-38.pyc +0 -0
  18. Control-Color/ldm/models/__pycache__/autoencoder.cpython-38.pyc +0 -0
  19. Control-Color/ldm/models/__pycache__/autoencoder_train.cpython-38.pyc +0 -0
  20. Control-Color/ldm/models/autoencoder.py +220 -0
  21. Control-Color/ldm/models/autoencoder_train.py +299 -0
  22. Control-Color/ldm/models/diffusion/__init__.py +0 -0
  23. Control-Color/ldm/models/diffusion/__pycache__/__init__.cpython-38.pyc +0 -0
  24. Control-Color/ldm/models/diffusion/__pycache__/ddim.cpython-38.pyc +0 -0
  25. Control-Color/ldm/models/diffusion/__pycache__/ddpm.cpython-38.pyc +0 -0
  26. Control-Color/ldm/models/diffusion/__pycache__/ddpm_nonoise.cpython-38.pyc +0 -0
  27. Control-Color/ldm/models/diffusion/ddim.py +337 -0
  28. Control-Color/ldm/models/diffusion/ddpm.py +1911 -0
  29. Control-Color/ldm/models/diffusion/dpm_solver/__init__.py +1 -0
  30. Control-Color/ldm/models/diffusion/dpm_solver/dpm_solver.py +1154 -0
  31. Control-Color/ldm/models/diffusion/dpm_solver/sampler.py +87 -0
  32. Control-Color/ldm/models/diffusion/plms.py +244 -0
  33. Control-Color/ldm/models/diffusion/sampling_util.py +22 -0
  34. Control-Color/ldm/models/logger.py +93 -0
  35. Control-Color/ldm/modules/__pycache__/attention.cpython-38.pyc +0 -0
  36. Control-Color/ldm/modules/__pycache__/attention_dcn_control.cpython-38.pyc +0 -0
  37. Control-Color/ldm/modules/__pycache__/ema.cpython-38.pyc +0 -0
  38. Control-Color/ldm/modules/attention.py +653 -0
  39. Control-Color/ldm/modules/attention_dcn_control.py +854 -0
  40. Control-Color/ldm/modules/diffusionmodules/__init__.py +0 -0
  41. Control-Color/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-38.pyc +0 -0
  42. Control-Color/ldm/modules/diffusionmodules/__pycache__/model.cpython-38.pyc +0 -0
  43. Control-Color/ldm/modules/diffusionmodules/__pycache__/model_brefore_dcn.cpython-38.pyc +0 -0
  44. Control-Color/ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-38.pyc +0 -0
  45. Control-Color/ldm/modules/diffusionmodules/__pycache__/util.cpython-38.pyc +0 -0
  46. Control-Color/ldm/modules/diffusionmodules/model.py +1107 -0
  47. Control-Color/ldm/modules/diffusionmodules/model_brefore_dcn.py +852 -0
  48. Control-Color/ldm/modules/diffusionmodules/openaimodel.py +853 -0
  49. Control-Color/ldm/modules/diffusionmodules/util.py +270 -0
  50. Control-Color/ldm/modules/distributions/__init__.py +0 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Control-Color/ldm/modules/image_degradation/utils/test.png filter=lfs diff=lfs merge=lfs -text
Control-Color/CtrlColor_environ.yaml ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: CtrlColor
2
+ channels:
3
+ - pytorch
4
+ - defaults
5
+ dependencies:
6
+ - python=3.8.5
7
+ - pip=20.3
8
+ - cudatoolkit=11.3
9
+ - pytorch=1.12.1
10
+ - torchvision=0.13.1
11
+ - numpy=1.23.1
12
+ - pip:
13
+ - gradio==3.31.0
14
+ - gradio-client==0.2.5
15
+ - albumentations==1.3.0
16
+ - opencv-python==4.9.0.80
17
+ - opencv-python-headless==4.5.5.64
18
+ - imageio==2.9.0
19
+ - imageio-ffmpeg==0.4.2
20
+ - pytorch-lightning==1.5.0
21
+ - omegaconf==2.1.1
22
+ - test-tube>=0.7.5
23
+ - streamlit==1.12.1
24
+ - webdataset==0.2.5
25
+ - kornia==0.6
26
+ - open_clip_torch==2.0.2
27
+ - invisible-watermark>=0.1.5
28
+ - streamlit-drawable-canvas==0.8.0
29
+ - torchmetrics==0.6.0
30
+ - addict==2.4.0
31
+ - yapf==0.32.0
32
+ - prettytable==3.6.0
33
+ - basicsr==1.4.2
34
+ - salesforce-lavis==1.0.2
35
+ - grpcio==1.60
36
+ - pydantic==1.10.5
37
+ - spacy==3.5.1
38
+ - typer==0.7.0
39
+ - typing-extensions==4.4.0
40
+ - fastapi==0.92.0
Control-Color/annotator/__pycache__/util.cpython-38.pyc ADDED
Binary file (1.35 kB). View file
 
Control-Color/annotator/util.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2
3
+ import os
4
+
5
+
6
+ annotator_ckpts_path = os.path.join(os.path.dirname(__file__), 'ckpts')
7
+
8
+
9
+ def HWC3(x):
10
+ assert x.dtype == np.uint8
11
+ if x.ndim == 2:
12
+ x = x[:, :, None]
13
+ assert x.ndim == 3
14
+ H, W, C = x.shape
15
+ assert C == 1 or C == 3 or C == 4
16
+ if C == 3:
17
+ return x
18
+ if C == 1:
19
+ return np.concatenate([x, x, x], axis=2)
20
+ if C == 4:
21
+ color = x[:, :, 0:3].astype(np.float32)
22
+ alpha = x[:, :, 3:4].astype(np.float32) / 255.0
23
+ y = color * alpha + 255.0 * (1.0 - alpha)
24
+ y = y.clip(0, 255).astype(np.uint8)
25
+ return y
26
+
27
+
28
+ def resize_image(input_image, resolution):
29
+ H, W, C = input_image.shape
30
+ H = float(H)
31
+ W = float(W)
32
+ k = float(resolution) / min(H, W)#min(H,W)
33
+ H *= k
34
+ W *= k
35
+ H_new = int(np.round(H / 64.0)) * 64
36
+ W_new = int(np.round(W / 64.0)) * 64
37
+ H = H_new if H_new<800 else int(np.round(800 / 64.0)) * 64#1024->896
38
+ W=W_new if W_new<800 else int(np.round(800 / 64.0)) * 64
39
+ img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
40
+ return img
Control-Color/app.py ADDED
@@ -0,0 +1,524 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from share import *
3
+ import config
4
+
5
+ import cv2
6
+ import einops
7
+ import gradio as gr
8
+ import numpy as np
9
+ import torch
10
+ import random
11
+
12
+ from pytorch_lightning import seed_everything
13
+ from annotator.util import resize_image
14
+ from cldm.model import create_model, load_state_dict
15
+ from cldm.ddim_haced_sag_step import DDIMSampler
16
+ from lavis.models import load_model_and_preprocess
17
+ from PIL import Image
18
+ import tqdm
19
+
20
+ from ldm.models.autoencoder_train import AutoencoderKL
21
+
22
+ ckpt_path="./pretrained_models/main_model.ckpt"
23
+
24
+ model = create_model('./models/cldm_v15_inpainting_infer1.yaml').cpu()
25
+ model.load_state_dict(load_state_dict(ckpt_path, location='cuda'),strict=False)
26
+ model = model.cuda()
27
+
28
+ ddim_sampler = DDIMSampler(model)
29
+
30
+
31
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
32
+ BLIP_model, vis_processors, _ = load_model_and_preprocess(name="blip_caption", model_type="base_coco", is_eval=True, device=device)
33
+
34
+ vae_model_ckpt_path="./pretrained_models/content-guided_deformable_vae.ckpt"
35
+
36
+ def load_vae():
37
+ init_config = {
38
+ "embed_dim": 4,
39
+ "monitor": "val/rec_loss",
40
+ "ddconfig":{
41
+ "double_z": True,
42
+ "z_channels": 4,
43
+ "resolution": 256,
44
+ "in_channels": 3,
45
+ "out_ch": 3,
46
+ "ch": 128,
47
+ "ch_mult":[1,2,4,4],
48
+ "num_res_blocks": 2,
49
+ "attn_resolutions": [],
50
+ "dropout": 0.0,
51
+ },
52
+ "lossconfig":{
53
+ "target": "ldm.modules.losses.LPIPSWithDiscriminator",
54
+ "params":{
55
+ "disc_start": 501,
56
+ "kl_weight": 0,
57
+ "disc_weight": 0.025,
58
+ "disc_factor": 1.0
59
+ }
60
+ }
61
+ }
62
+ vae = AutoencoderKL(**init_config)
63
+ vae.load_state_dict(load_state_dict(vae_model_ckpt_path, location='cuda'))
64
+ vae = vae.cuda()
65
+ return vae
66
+
67
+ vae_model=load_vae()
68
+
69
+ def encode_mask(mask,masked_image):
70
+ mask = torch.nn.functional.interpolate(mask, size=(mask.shape[2] // 8, mask.shape[3] // 8))
71
+ # mask=torch.cat([mask] * 2) #if do_classifier_free_guidance else mask
72
+ mask = mask.to(device="cuda")
73
+ # do_classifier_free_guidance=False
74
+ masked_image_latents = model.get_first_stage_encoding(model.encode_first_stage(masked_image.cuda())).detach()
75
+ return mask,masked_image_latents
76
+
77
+ def get_mask(input_image,hint_image):
78
+ mask=input_image.copy()
79
+ H,W,C=input_image.shape
80
+ for i in range(H):
81
+ for j in range(W):
82
+ if input_image[i,j,0]==hint_image[i,j,0]:
83
+ # print(input_image[i,j,0])
84
+ mask[i,j,:]=255.
85
+ else:
86
+ mask[i,j,:]=0. #input_image[i,j,:]
87
+ kernel=cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))
88
+ mask=cv2.morphologyEx(np.array(mask),cv2.MORPH_OPEN,kernel,iterations=1)
89
+ return mask
90
+
91
+ def prepare_mask_and_masked_image(image, mask):
92
+ """
93
+ Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
94
+ converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
95
+ ``image`` and ``1`` for the ``mask``.
96
+ The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
97
+ binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
98
+ Args:
99
+ image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
100
+ It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
101
+ ``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
102
+ mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
103
+ It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
104
+ ``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
105
+ Raises:
106
+ ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
107
+ should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
108
+ TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
109
+ (ot the other way around).
110
+ Returns:
111
+ tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
112
+ dimensions: ``batch x channels x height x width``.
113
+ """
114
+ if isinstance(image, torch.Tensor):
115
+ if not isinstance(mask, torch.Tensor):
116
+ raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not")
117
+
118
+ # Batch single image
119
+ if image.ndim == 3:
120
+ assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
121
+ image = image.unsqueeze(0)
122
+
123
+ # Batch and add channel dim for single mask
124
+ if mask.ndim == 2:
125
+ mask = mask.unsqueeze(0).unsqueeze(0)
126
+
127
+ # Batch single mask or add channel dim
128
+ if mask.ndim == 3:
129
+ # Single batched mask, no channel dim or single mask not batched but channel dim
130
+ if mask.shape[0] == 1:
131
+ mask = mask.unsqueeze(0)
132
+
133
+ # Batched masks no channel dim
134
+ else:
135
+ mask = mask.unsqueeze(1)
136
+
137
+ assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
138
+ assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
139
+ assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
140
+
141
+ # Check image is in [-1, 1]
142
+ if image.min() < -1 or image.max() > 1:
143
+ raise ValueError("Image should be in [-1, 1] range")
144
+
145
+ # Check mask is in [0, 1]
146
+ if mask.min() < 0 or mask.max() > 1:
147
+ raise ValueError("Mask should be in [0, 1] range")
148
+
149
+ # Binarize mask
150
+ mask[mask < 0.5] = 0
151
+ mask[mask >= 0.5] = 1
152
+
153
+ # Image as float32
154
+ image = image.to(dtype=torch.float32)
155
+ elif isinstance(mask, torch.Tensor):
156
+ raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
157
+ else:
158
+ # preprocess image
159
+ if isinstance(image, (Image.Image, np.ndarray)):
160
+ image = [image]
161
+
162
+ if isinstance(image, list) and isinstance(image[0], Image.Image):
163
+ image = [np.array(i.convert("RGB"))[None, :] for i in image]
164
+ image = np.concatenate(image, axis=0)
165
+ elif isinstance(image, list) and isinstance(image[0], np.ndarray):
166
+ image = np.concatenate([i[None, :] for i in image], axis=0)
167
+
168
+ image = image.transpose(0, 3, 1, 2)
169
+ image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
170
+
171
+ # preprocess mask
172
+ if isinstance(mask, (Image.Image, np.ndarray)):
173
+ mask = [mask]
174
+
175
+ if isinstance(mask, list) and isinstance(mask[0], Image.Image):
176
+ mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
177
+ mask = mask.astype(np.float32) / 255.0
178
+ elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
179
+ mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
180
+
181
+ mask[mask < 0.5] = 0
182
+ mask[mask >= 0.5] = 1
183
+ mask = torch.from_numpy(mask)
184
+
185
+ masked_image = image * (mask < 0.5)
186
+
187
+ return mask, masked_image
188
+
189
+ # generate image
190
+ generator = torch.manual_seed(859311133)#0
191
+ def path2L(img_path):
192
+ raw_image = cv2.imread(img_path)
193
+ raw_image = cv2.cvtColor(raw_image,cv2.COLOR_BGR2LAB)
194
+ raw_image_input = cv2.merge([raw_image[:,:,0],raw_image[:,:,0],raw_image[:,:,0]])
195
+ return raw_image_input
196
+
197
+ def is_gray_scale(img, threshold=10):
198
+ img = Image.fromarray(img)
199
+ if len(img.getbands()) == 1:
200
+ return True
201
+ img1 = np.asarray(img.getchannel(channel=0), dtype=np.int16)
202
+ img2 = np.asarray(img.getchannel(channel=1), dtype=np.int16)
203
+ img3 = np.asarray(img.getchannel(channel=2), dtype=np.int16)
204
+ diff1 = (img1 - img2).var()
205
+ diff2 = (img2 - img3).var()
206
+ diff3 = (img3 - img1).var()
207
+ diff_sum = (diff1 + diff2 + diff3) / 3.0
208
+ if diff_sum <= threshold:
209
+ return True
210
+ else:
211
+ return False
212
+
213
+ def randn_tensor(
214
+ shape,
215
+ generator= None,
216
+ device= None,
217
+ dtype=None,
218
+ layout= None,
219
+ ):
220
+ """A helper function to create random tensors on the desired `device` with the desired `dtype`. When
221
+ passing a list of generators, you can seed each batch size individually. If CPU generators are passed, the tensor
222
+ is always created on the CPU.
223
+ """
224
+ # device on which tensor is created defaults to device
225
+ rand_device = device
226
+ batch_size = shape[0]
227
+
228
+ layout = layout or torch.strided
229
+ device = device or torch.device("cpu")
230
+
231
+ if generator is not None:
232
+ gen_device_type = generator.device.type if not isinstance(generator, list) else generator[0].device.type
233
+ if gen_device_type != device.type and gen_device_type == "cpu":
234
+ rand_device = "cpu"
235
+ if device != "mps":
236
+ print("The passed generator was created on 'cpu' even though a tensor on {device} was expected.")
237
+ # logger.info(
238
+ # f"The passed generator was created on 'cpu' even though a tensor on {device} was expected."
239
+ # f" Tensors will be created on 'cpu' and then moved to {device}. Note that one can probably"
240
+ # f" slighly speed up this function by passing a generator that was created on the {device} device."
241
+ # )
242
+ elif gen_device_type != device.type and gen_device_type == "cuda":
243
+ raise ValueError(f"Cannot generate a {device} tensor from a generator of type {gen_device_type}.")
244
+
245
+ # make sure generator list of length 1 is treated like a non-list
246
+ if isinstance(generator, list) and len(generator) == 1:
247
+ generator = generator[0]
248
+
249
+ if isinstance(generator, list):
250
+ shape = (1,) + shape[1:]
251
+ latents = [
252
+ torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype, layout=layout)
253
+ for i in range(batch_size)
254
+ ]
255
+ latents = torch.cat(latents, dim=0).to(device)
256
+ else:
257
+ latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype, layout=layout).to(device)
258
+
259
+ return latents
260
+
261
+ def add_noise(
262
+ original_samples: torch.FloatTensor,
263
+ noise: torch.FloatTensor,
264
+ timesteps: torch.IntTensor,
265
+ ) -> torch.FloatTensor:
266
+ betas = torch.linspace(0.00085, 0.0120, 1000, dtype=torch.float32)
267
+ alphas = 1.0 - betas
268
+ alphas_cumprod = torch.cumprod(alphas, dim=0)
269
+ alphas_cumprod = alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
270
+ timesteps = timesteps.to(original_samples.device)
271
+
272
+ sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
273
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
274
+ while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
275
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
276
+
277
+ sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
278
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
279
+ while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
280
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
281
+
282
+ noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
283
+
284
+ return noisy_samples
285
+
286
+ def set_timesteps(num_inference_steps: int, timestep_spacing="leading",device=None):
287
+ """
288
+ Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
289
+
290
+ Args:
291
+ num_inference_steps (`int`):
292
+ the number of diffusion steps used when generating samples with a pre-trained model.
293
+ """
294
+ num_train_timesteps=1000
295
+ if num_inference_steps > num_train_timesteps:
296
+ raise ValueError(
297
+ f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
298
+ f" {num_train_timesteps} as the unet model trained with this scheduler can only handle"
299
+ f" maximal {num_train_timesteps} timesteps."
300
+ )
301
+
302
+ num_inference_steps = num_inference_steps
303
+ # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
304
+ if timestep_spacing == "linspace":
305
+ timesteps = (
306
+ np.linspace(0, num_train_timesteps - 1, num_inference_steps)
307
+ .round()[::-1]
308
+ .copy()
309
+ .astype(np.int64)
310
+ )
311
+ elif timestep_spacing == "leading":
312
+ step_ratio = num_train_timesteps // num_inference_steps
313
+ # creates integer timesteps by multiplying by ratio
314
+ # casting to int to avoid issues when num_inference_step is power of 3
315
+ timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
316
+ # timesteps += steps_offset
317
+ elif timestep_spacing == "trailing":
318
+ step_ratio = num_train_timesteps / num_inference_steps
319
+ # creates integer timesteps by multiplying by ratio
320
+ # casting to int to avoid issues when num_inference_step is power of 3
321
+ timesteps = np.round(np.arange(num_train_timesteps, 0, -step_ratio)).astype(np.int64)
322
+ timesteps -= 1
323
+ else:
324
+ raise ValueError(
325
+ f"{timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'."
326
+ )
327
+
328
+ timesteps = torch.from_numpy(timesteps).to(device)
329
+ return timesteps
330
+
331
+ def get_timesteps(num_inference_steps, timesteps_set, strength, device):
332
+ # get the original timestep using init_timestep
333
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
334
+
335
+ t_start = max(num_inference_steps - init_timestep, 0)
336
+ timesteps = timesteps_set[t_start * 1 :]
337
+
338
+ return timesteps, num_inference_steps - t_start
339
+
340
+
341
+ def get_noised_image_latents(img,W,H,ddim_steps,strength,seed,device):
342
+ img1 = [cv2.resize(img,(W,H))]
343
+ img1 = np.concatenate([i[None, :] for i in img1], axis=0)
344
+ img1 = img1.transpose(0, 3, 1, 2)
345
+ img1 = torch.from_numpy(img1).to(dtype=torch.float32) /127.5 - 1.0
346
+
347
+ image_latents=model.get_first_stage_encoding(model.encode_first_stage(img1.cuda())).detach()
348
+ shape=image_latents.shape
349
+ generator = torch.manual_seed(seed)
350
+
351
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=torch.float32)
352
+
353
+ timesteps_set=set_timesteps(ddim_steps,timestep_spacing="linspace", device=device)
354
+ timesteps, num_inference_steps = get_timesteps(ddim_steps, timesteps_set, strength, device)
355
+ latent_timestep = timesteps[1].repeat(1 * 1)
356
+
357
+ init_latents = add_noise(image_latents, noise, torch.tensor(latent_timestep))
358
+ for j in range(0, 1000, 100):
359
+
360
+ x_samples=model.decode_first_stage(add_noise(image_latents, noise, torch.tensor(j)))
361
+ init_image=(einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
362
+
363
+ cv2.imwrite("./initlatents1/"+str(j)+"init_image.png",cv2.cvtColor(init_image[0],cv2.COLOR_RGB2BGR))
364
+ return init_latents
365
+
366
+ def process(using_deformable_vae,change_according_to_strokes,iterative_editing,input_image,hint_image,prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, sag_scale,SAG_influence_step, seed, eta):
367
+ torch.cuda.empty_cache()
368
+ with torch.no_grad():
369
+ ref_flag=True
370
+ input_image_ori=input_image
371
+ if is_gray_scale(input_image):
372
+ print("It is a greyscale image.")
373
+ # mask=get_mask(input_image,hint_image)
374
+ else:
375
+ print("It is a color image.")
376
+ input_image_ori=input_image
377
+ input_image=cv2.cvtColor(input_image,cv2.COLOR_RGB2LAB)[:,:,0]
378
+ input_image=cv2.merge([input_image,input_image,input_image])
379
+ mask=get_mask(input_image_ori,hint_image)
380
+ cv2.imwrite("gradio_mask1.png",mask)
381
+
382
+ if iterative_editing:
383
+ mask=255-mask
384
+ if change_according_to_strokes:
385
+ hint_image=mask/255.*hint_image+(1-mask/255.)*input_image_ori
386
+ else:
387
+ hint_image=mask/255.*input_image+(1-mask/255.)*input_image_ori
388
+ else:
389
+ hint_image=mask/255.*input_image+(1-mask/255.)*hint_image
390
+ hint_image=hint_image.astype(np.uint8)
391
+ if len(prompt)==0:
392
+ image = Image.fromarray(input_image)
393
+ image = vis_processors["eval"](image).unsqueeze(0).to(device)
394
+ prompt = BLIP_model.generate({"image": image})[0]
395
+ if "a black and white photo of" in prompt or "black and white photograph of" in prompt:
396
+ prompt=prompt.replace(prompt[:prompt.find("of")+3],"")
397
+ print(prompt)
398
+ H_ori,W_ori,C_ori=input_image.shape
399
+ img = resize_image(input_image, image_resolution)
400
+ mask = resize_image(mask, image_resolution)
401
+ hint_image =resize_image(hint_image,image_resolution)
402
+ mask,masked_image=prepare_mask_and_masked_image(Image.fromarray(hint_image),Image.fromarray(mask))
403
+ mask,masked_image_latents=encode_mask(mask,masked_image)
404
+ H, W, C = img.shape
405
+
406
+ # if ref_image is None:
407
+ ref_image=np.array([[[0]*C]*W]*H).astype(np.float32)
408
+ # print(ref_image.shape)
409
+ # ref_flag=False
410
+ ref_image=resize_image(ref_image,image_resolution)
411
+
412
+ # cv2.imwrite("exemplar_image.png",cv2.cvtColor(ref_image,cv2.COLOR_RGB2BGR))
413
+
414
+ # ddim_steps=1
415
+ control = torch.from_numpy(img.copy()).float().cuda() / 255.0
416
+ control = torch.stack([control for _ in range(num_samples)], dim=0)
417
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
418
+
419
+ if seed == -1:
420
+ seed = random.randint(0, 65535)
421
+ seed_everything(seed)
422
+
423
+ ref_image=cv2.resize(ref_image,(W,H))
424
+
425
+ ref_image=torch.from_numpy(ref_image).cuda().unsqueeze(0)
426
+
427
+ init_latents=None
428
+
429
+ if config.save_memory:
430
+ model.low_vram_shift(is_diffusing=False)
431
+
432
+ print("no reference images, using Frozen encoder")
433
+ cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
434
+ un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
435
+ shape = (4, H // 8, W // 8)
436
+
437
+ if config.save_memory:
438
+ model.low_vram_shift(is_diffusing=True)
439
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=torch.float32)
440
+ model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
441
+ samples, intermediates = ddim_sampler.sample(model,ddim_steps, num_samples,
442
+ shape, cond, mask=mask, masked_image_latents=masked_image_latents,verbose=False, eta=eta,
443
+ # x_T=image_latents,
444
+ x_T=init_latents,
445
+ unconditional_guidance_scale=scale,
446
+ sag_scale = sag_scale,
447
+ SAG_influence_step=SAG_influence_step,
448
+ noise = noise,
449
+ unconditional_conditioning=un_cond)
450
+
451
+
452
+ if config.save_memory:
453
+ model.low_vram_shift(is_diffusing=False)
454
+
455
+ if not using_deformable_vae:
456
+ x_samples = model.decode_first_stage(samples)
457
+ else:
458
+ samples = model.decode_first_stage_before_vae(samples)
459
+ gray_content_z=vae_model.get_gray_content_z(torch.from_numpy(img.copy()).float().cuda() / 255.0)
460
+ # print(gray_content_z.shape)
461
+ x_samples = vae_model.decode(samples,gray_content_z)
462
+
463
+ x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
464
+
465
+ #single image replace L channel
466
+ results_ori = [x_samples[i] for i in range(num_samples)]
467
+ results_ori=[cv2.resize(i,(W_ori,H_ori),interpolation=cv2.INTER_LANCZOS4) for i in results_ori]
468
+
469
+ cv2.imwrite("result_ori.png",cv2.cvtColor(results_ori[0],cv2.COLOR_RGB2BGR))
470
+
471
+ results_tmp=[cv2.cvtColor(np.array(i),cv2.COLOR_RGB2LAB) for i in results_ori]
472
+ results=[cv2.merge([input_image[:,:,0],tmp[:,:,1],tmp[:,:,2]]) for tmp in results_tmp]
473
+ results_mergeL=[cv2.cvtColor(np.asarray(i),cv2.COLOR_LAB2RGB) for i in results]#cv2.COLOR_LAB2BGR)
474
+ cv2.imwrite("output.png",cv2.cvtColor(results_mergeL[0],cv2.COLOR_RGB2BGR))
475
+ return results_mergeL
476
+
477
+ def get_grayscale_img(img, progress=gr.Progress(track_tqdm=True)):
478
+ torch.cuda.empty_cache()
479
+ for j in tqdm.tqdm(range(1),desc="Uploading input..."):
480
+ return img,"Uploading input image done."
481
+
482
+ block = gr.Blocks().queue()
483
+ with block:
484
+ with gr.Row():
485
+ gr.Markdown("## Control-Color")#("## Color-Anything")#Control Stable Diffusion with L channel
486
+ with gr.Row():
487
+ with gr.Column():
488
+ # input_image = gr.Image(source='upload', type="numpy")
489
+ grayscale_img = gr.Image(visible=False, type="numpy")
490
+ input_image = gr.Image(source='upload',tool='color-sketch',interactive=True)
491
+ Grayscale_button = gr.Button(value="Upload input image")
492
+ text_out = gr.Textbox(value="Please upload input image first, then draw the strokes or input text prompts or give reference images as you wish.")
493
+ prompt = gr.Textbox(label="Prompt")
494
+ change_according_to_strokes = gr.Checkbox(label='Change according to strokes\' color', value=True)
495
+ iterative_editing = gr.Checkbox(label='Only change the strokes\' area', value=False)
496
+ using_deformable_vae = gr.Checkbox(label='Using deformable vae. (Less color overflow)', value=False)
497
+ # with gr.Accordion("Input Reference", open=False):
498
+ # ref_image = gr.Image(source='upload', type="numpy")
499
+ run_button = gr.Button(label="Upload prompts/strokes (optional) and Run",value="Upload prompts/strokes (optional) and Run")
500
+ with gr.Accordion("Advanced options", open=False):
501
+ num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
502
+ image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
503
+ strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
504
+ guess_mode = gr.Checkbox(label='Guess Mode', value=False)
505
+ #detect_resolution = gr.Slider(label="Depth Resolution", minimum=128, maximum=1024, value=384, step=1)
506
+ ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
507
+ scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=7.0, step=0.1)#value=9.0
508
+ sag_scale = gr.Slider(label="SAG Scale", minimum=0.0, maximum=1.0, value=0.05, step=0.01)#0.08
509
+ SAG_influence_step = gr.Slider(label="1000-SAG influence step", minimum=0, maximum=900, value=600, step=50)
510
+ seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)#94433242802
511
+ eta = gr.Number(label="eta (DDIM)", value=0.0)
512
+ a_prompt = gr.Textbox(label="Added Prompt", value='best quality, detailed, real')#extremely detailed
513
+ n_prompt = gr.Textbox(label="Negative Prompt",
514
+ value='a black and white photo, longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
515
+ with gr.Column():
516
+ result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
517
+ # grayscale_img = gr.Image(interactive=False,visible=False)
518
+
519
+ Grayscale_button.click(fn=get_grayscale_img,inputs=input_image,outputs=[grayscale_img,text_out])
520
+ ips = [using_deformable_vae,change_according_to_strokes,iterative_editing,grayscale_img,input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale,sag_scale,SAG_influence_step, seed, eta]
521
+ run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
522
+
523
+
524
+ block.launch(server_name='0.0.0.0',share=True)
Control-Color/cldm/__pycache__/cldm.cpython-38.pyc ADDED
Binary file (12 kB). View file
 
Control-Color/cldm/__pycache__/ddim_haced_sag_step.cpython-38.pyc ADDED
Binary file (13.3 kB). View file
 
Control-Color/cldm/__pycache__/hack.cpython-310.pyc ADDED
Binary file (3.88 kB). View file
 
Control-Color/cldm/__pycache__/hack.cpython-38.pyc ADDED
Binary file (3.89 kB). View file
 
Control-Color/cldm/__pycache__/model.cpython-38.pyc ADDED
Binary file (1.09 kB). View file
 
Control-Color/cldm/cldm.py ADDED
@@ -0,0 +1,547 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import einops
2
+ import torch
3
+ import torch as th
4
+ import torch.nn as nn
5
+
6
+ from ldm.modules.diffusionmodules.util import (
7
+ conv_nd,
8
+ linear,
9
+ zero_module,
10
+ timestep_embedding,
11
+ )
12
+
13
+ from einops import rearrange, repeat
14
+ from torchvision.utils import make_grid
15
+ from ldm.modules.attention import SpatialTransformer
16
+ from ldm.modules.attention_dcn_control import SpatialTransformer_dcn
17
+ from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
18
+ from ldm.models.diffusion.ddpm import LatentDiffusion
19
+ from ldm.util import log_txt_as_img, exists, instantiate_from_config
20
+ from ldm.models.diffusion.ddim import DDIMSampler
21
+
22
+
23
+ class ControlledUnetModel(UNetModel):
24
+ def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs):
25
+ hs = []
26
+ # print("timestep",timesteps)
27
+ with torch.no_grad():
28
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
29
+ # print("t_emb",t_emb)
30
+ emb = self.time_embed(t_emb)
31
+ h = x.type(self.dtype)
32
+ for module in self.input_blocks:
33
+ h = module(h, emb, context)#,timestep=timesteps)
34
+ hs.append(h)
35
+ h = self.middle_block(h, emb, context)#,timestep=timesteps)
36
+
37
+ if control is not None:
38
+ h += control.pop()
39
+
40
+ for i, module in enumerate(self.output_blocks):
41
+ # print("output_blocks0",h.shape)
42
+ if only_mid_control or control is None:
43
+ h = torch.cat([h, hs.pop()], dim=1)
44
+ else:
45
+ h = torch.cat([h, hs.pop() + control.pop()], dim=1)
46
+ h = module(h, emb, context)#,timestep=timesteps)
47
+
48
+ # print("output_blocks",h.shape)
49
+
50
+ h = h.type(x.dtype)
51
+ h=self.out(h)
52
+ # print("self.ot",h.shape)
53
+ return h
54
+
55
+
56
+ class ControlNet(nn.Module):
57
+ def __init__(
58
+ self,
59
+ image_size,
60
+ in_channels,
61
+ model_channels,
62
+ hint_channels,
63
+ num_res_blocks,
64
+ attention_resolutions,
65
+ dropout=0,
66
+ channel_mult=(1, 2, 4, 8),
67
+ conv_resample=True,
68
+ dims=2,
69
+ use_checkpoint=False,
70
+ use_fp16=False,
71
+ num_heads=-1,
72
+ num_head_channels=-1,
73
+ num_heads_upsample=-1,
74
+ use_scale_shift_norm=False,
75
+ resblock_updown=False,
76
+ use_new_attention_order=False,
77
+ use_spatial_transformer=False, # custom transformer support
78
+ transformer_depth=1, # custom transformer support
79
+ context_dim=None, # custom transformer support
80
+ n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
81
+ legacy=True,
82
+ disable_self_attentions=None,
83
+ num_attention_blocks=None,
84
+ disable_middle_self_attn=False,
85
+ use_linear_in_transformer=False,
86
+ ):
87
+ super().__init__()
88
+ if use_spatial_transformer:
89
+ assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
90
+
91
+ if context_dim is not None:
92
+ assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
93
+ from omegaconf.listconfig import ListConfig
94
+ if type(context_dim) == ListConfig:
95
+ context_dim = list(context_dim)
96
+
97
+ if num_heads_upsample == -1:
98
+ num_heads_upsample = num_heads
99
+
100
+ if num_heads == -1:
101
+ assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
102
+
103
+ if num_head_channels == -1:
104
+ assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
105
+
106
+ self.dims = dims
107
+ self.image_size = image_size
108
+ self.in_channels = in_channels
109
+ self.model_channels = model_channels
110
+ if isinstance(num_res_blocks, int):
111
+ self.num_res_blocks = len(channel_mult) * [num_res_blocks]
112
+ else:
113
+ if len(num_res_blocks) != len(channel_mult):
114
+ raise ValueError("provide num_res_blocks either as an int (globally constant) or "
115
+ "as a list/tuple (per-level) with the same length as channel_mult")
116
+ self.num_res_blocks = num_res_blocks
117
+ if disable_self_attentions is not None:
118
+ # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
119
+ assert len(disable_self_attentions) == len(channel_mult)
120
+ if num_attention_blocks is not None:
121
+ assert len(num_attention_blocks) == len(self.num_res_blocks)
122
+ assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
123
+ print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
124
+ f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
125
+ f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
126
+ f"attention will still not be set.")
127
+
128
+ self.attention_resolutions = attention_resolutions
129
+ self.dropout = dropout
130
+ self.channel_mult = channel_mult
131
+ self.conv_resample = conv_resample
132
+ self.use_checkpoint = use_checkpoint
133
+ self.dtype = th.float16 if use_fp16 else th.float32
134
+ self.num_heads = num_heads
135
+ self.num_head_channels = num_head_channels
136
+ self.num_heads_upsample = num_heads_upsample
137
+ self.predict_codebook_ids = n_embed is not None
138
+
139
+ time_embed_dim = model_channels * 4
140
+ self.time_embed = nn.Sequential(
141
+ linear(model_channels, time_embed_dim),
142
+ nn.SiLU(),
143
+ linear(time_embed_dim, time_embed_dim),
144
+ )
145
+
146
+ self.input_blocks = nn.ModuleList(
147
+ [
148
+ TimestepEmbedSequential(
149
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)
150
+ )
151
+ ]
152
+ )
153
+ self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
154
+
155
+ self.input_hint_block = TimestepEmbedSequential(
156
+ conv_nd(dims, hint_channels, 16, 3, padding=1),
157
+ nn.SiLU(),
158
+ conv_nd(dims, 16, 16, 3, padding=1),
159
+ nn.SiLU(),
160
+ conv_nd(dims, 16, 32, 3, padding=1, stride=2),
161
+ nn.SiLU(),
162
+ conv_nd(dims, 32, 32, 3, padding=1),
163
+ nn.SiLU(),
164
+ conv_nd(dims, 32, 96, 3, padding=1, stride=2),
165
+ nn.SiLU(),
166
+ conv_nd(dims, 96, 96, 3, padding=1),
167
+ nn.SiLU(),
168
+ conv_nd(dims, 96, 256, 3, padding=1, stride=2),
169
+ nn.SiLU(),
170
+ zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
171
+ )
172
+
173
+ self._feature_size = model_channels
174
+ input_block_chans = [model_channels]
175
+ ch = model_channels
176
+ ds = 1
177
+ for level, mult in enumerate(channel_mult):
178
+ for nr in range(self.num_res_blocks[level]):
179
+ layers = [
180
+ ResBlock(
181
+ ch,
182
+ time_embed_dim,
183
+ dropout,
184
+ out_channels=mult * model_channels,
185
+ dims=dims,
186
+ use_checkpoint=use_checkpoint,
187
+ use_scale_shift_norm=use_scale_shift_norm,
188
+ )
189
+ ]
190
+ ch = mult * model_channels
191
+ if ds in attention_resolutions:
192
+ if num_head_channels == -1:
193
+ dim_head = ch // num_heads
194
+ else:
195
+ num_heads = ch // num_head_channels
196
+ dim_head = num_head_channels
197
+ if legacy:
198
+ # num_heads = 1
199
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
200
+ if exists(disable_self_attentions):
201
+ disabled_sa = disable_self_attentions[level]
202
+ else:
203
+ disabled_sa = False
204
+
205
+ if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
206
+ layers.append(
207
+ AttentionBlock(
208
+ ch,
209
+ use_checkpoint=use_checkpoint,
210
+ num_heads=num_heads,
211
+ num_head_channels=dim_head,
212
+ use_new_attention_order=use_new_attention_order,
213
+ ) if not use_spatial_transformer else SpatialTransformer(
214
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
215
+ disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
216
+ use_checkpoint=use_checkpoint
217
+ )
218
+ )
219
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
220
+ self.zero_convs.append(self.make_zero_conv(ch))
221
+ self._feature_size += ch
222
+ input_block_chans.append(ch)
223
+ if level != len(channel_mult) - 1:
224
+ out_ch = ch
225
+ self.input_blocks.append(
226
+ TimestepEmbedSequential(
227
+ ResBlock(
228
+ ch,
229
+ time_embed_dim,
230
+ dropout,
231
+ out_channels=out_ch,
232
+ dims=dims,
233
+ use_checkpoint=use_checkpoint,
234
+ use_scale_shift_norm=use_scale_shift_norm,
235
+ down=True,
236
+ )
237
+ if resblock_updown
238
+ else Downsample(
239
+ ch, conv_resample, dims=dims, out_channels=out_ch
240
+ )
241
+ )
242
+ )
243
+ ch = out_ch
244
+ input_block_chans.append(ch)
245
+ self.zero_convs.append(self.make_zero_conv(ch))
246
+ ds *= 2
247
+ self._feature_size += ch
248
+
249
+ if num_head_channels == -1:
250
+ dim_head = ch // num_heads
251
+ else:
252
+ num_heads = ch // num_head_channels
253
+ dim_head = num_head_channels
254
+ if legacy:
255
+ # num_heads = 1
256
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
257
+ self.middle_block = TimestepEmbedSequential(
258
+ ResBlock(
259
+ ch,
260
+ time_embed_dim,
261
+ dropout,
262
+ dims=dims,
263
+ use_checkpoint=use_checkpoint,
264
+ use_scale_shift_norm=use_scale_shift_norm,
265
+ ),
266
+ AttentionBlock(
267
+ ch,
268
+ use_checkpoint=use_checkpoint,
269
+ num_heads=num_heads,
270
+ num_head_channels=dim_head,
271
+ use_new_attention_order=use_new_attention_order,
272
+ ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
273
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
274
+ disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
275
+ use_checkpoint=use_checkpoint
276
+ ),
277
+ ResBlock(
278
+ ch,
279
+ time_embed_dim,
280
+ dropout,
281
+ dims=dims,
282
+ use_checkpoint=use_checkpoint,
283
+ use_scale_shift_norm=use_scale_shift_norm,
284
+ ),
285
+ )
286
+ self.middle_block_out = self.make_zero_conv(ch)
287
+ self._feature_size += ch
288
+
289
+ def make_zero_conv(self, channels):
290
+ return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
291
+
292
+ def forward(self, x, hint, timesteps, context, **kwargs):
293
+ # print("cldm",hint.shape,x.shape)
294
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
295
+ emb = self.time_embed(t_emb)
296
+
297
+ guided_hint = self.input_hint_block(hint, emb, context)
298
+
299
+ outs = []
300
+
301
+ h = x.type(self.dtype)
302
+ # h_in=h
303
+
304
+ for module, zero_conv in zip(self.input_blocks, self.zero_convs):
305
+ if guided_hint is not None:
306
+ h = module(h, emb, context)#,dcn_guide=h_in)
307
+ h += guided_hint
308
+ guided_hint = None
309
+ else:
310
+ # print("dcn_guide")
311
+ h = module(h, emb, context)#,dcn_guide=h_in)
312
+ outs.append(zero_conv(h, emb, context))
313
+
314
+ h = self.middle_block(h, emb, context)#,dcn_guide=h_in)
315
+ outs.append(self.middle_block_out(h, emb, context))
316
+
317
+ return outs
318
+
319
+
320
+ class ControlLDM(LatentDiffusion):
321
+
322
+ def __init__(self, control_stage_config, control_key, only_mid_control, *args, **kwargs): #freeze
323
+ # print(control_stage_config)
324
+ super().__init__(*args, **kwargs)
325
+ self.control_model = instantiate_from_config(control_stage_config)
326
+ self.control_key = control_key
327
+ self.only_mid_control = only_mid_control
328
+ self.control_scales = [1.0] * 13
329
+ # if freeze==True:
330
+ # self.freeze()
331
+
332
+ # def freeze(self):
333
+ # #self.train = disabled_train
334
+ # for param in self.parameters():
335
+ # param.requires_grad = False
336
+
337
+
338
+
339
+ @torch.no_grad()
340
+ def get_input(self, batch, k, bs=None, *args, **kwargs):
341
+ x,mask,masked_image_latents, c = super().get_input(batch, self.first_stage_key, *args, **kwargs)
342
+ control = batch[self.control_key]
343
+ if bs is not None:
344
+ control = control[:bs]
345
+ control = control.to(self.device)
346
+ control = einops.rearrange(control, 'b h w c -> b c h w')
347
+ control = control.to(memory_format=torch.contiguous_format).float()
348
+ return x,mask,masked_image_latents, dict(c_crossattn=[c], c_concat=[control])
349
+
350
+ def apply_model(self, x_noisy,mask,masked_image_latents, t, cond, *args, **kwargs):
351
+ assert isinstance(cond, dict)
352
+ diffusion_model = self.model.diffusion_model
353
+
354
+ cond_txt = torch.cat(cond['c_crossattn'], 1)
355
+ # print(cond_txt.shape,cond['c_crossattn'].shape)
356
+ if cond['c_concat'] is None:
357
+ eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=None, only_mid_control=self.only_mid_control)
358
+ else:
359
+ control = self.control_model(x=x_noisy, hint=torch.cat(cond['c_concat'], 1), timesteps=t, context=cond_txt)
360
+ control = [c * scale for c, scale in zip(control, self.control_scales)]
361
+ mask=torch.cat([mask] * x_noisy.shape[0])
362
+ masked_image_latents=torch.cat([masked_image_latents] * x_noisy.shape[0])
363
+ x_noisy = torch.cat([x_noisy,mask,masked_image_latents], dim=1)
364
+ eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=control, only_mid_control=self.only_mid_control)
365
+
366
+ return eps
367
+
368
+ def apply_model_addhint(self, x_noisy,mask,masked_image_latents, t, cond, *args, **kwargs):
369
+ assert isinstance(cond, dict)
370
+ diffusion_model = self.model.diffusion_model
371
+
372
+ cond_txt = torch.cat(cond['c_crossattn'], 1)
373
+ # print(cond_txt.shape,cond['c_crossattn'].shape)
374
+ if cond['c_concat'] is None:
375
+ eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=None, only_mid_control=self.only_mid_control)
376
+ else:
377
+ control = self.control_model(x=x_noisy, hint=torch.cat(cond['c_concat'], 1), timesteps=t, context=cond_txt)
378
+ control = [c * scale for c, scale in zip(control, self.control_scales)]
379
+ # print(x_noisy.shape,mask.shape,masked_image_latents.shape)
380
+ x_noisy = torch.cat([x_noisy,mask,masked_image_latents], dim=1)
381
+ eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=control, only_mid_control=self.only_mid_control)
382
+
383
+ return eps
384
+
385
+ @torch.no_grad()
386
+ def get_unconditional_conditioning(self, N):
387
+ return self.get_learned_conditioning([""] * N)
388
+ # def get_unconditional_conditioning(self, N,hint_image):
389
+ # hint_image[:,:,:,:]=0
390
+ # return self.get_learned_conditioning(([""] * N,hint_image))
391
+
392
+ # @torch.no_grad()
393
+ # def log_images(self, batch, N=4, n_row=2, sample=False, ddim_steps=50, ddim_eta=0.0, return_keys=None,
394
+ # quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
395
+ # plot_diffusion_rows=False, unconditional_guidance_scale=9.0, unconditional_guidance_label=None,
396
+ # use_ema_scope=True,
397
+ # **kwargs):
398
+ # use_ddim = ddim_steps is not None
399
+
400
+ # log = dict()
401
+ # z,mask,masked_image_latents, c = self.get_input(batch, self.first_stage_key, bs=N)
402
+ # c_cat, c = c["c_concat"][0][:N], c["c_crossattn"][0][:N]
403
+ # N = min(z.shape[0], N)
404
+ # n_row = min(z.shape[0], n_row)
405
+ # log["reconstruction"] = self.decode_first_stage(z)
406
+ # log["control"] = c_cat * 2.0 - 1.0
407
+ # log["conditioning"] = log_txt_as_img((512, 512), batch[self.cond_stage_key], size=16)
408
+ # txt,hint_image=batch[self.cond_stage_key]
409
+ # if plot_diffusion_rows:
410
+ # # get diffusion row
411
+ # diffusion_row = list()
412
+ # z_start = z[:n_row]
413
+ # for t in range(self.num_timesteps):
414
+ # if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
415
+ # t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
416
+ # t = t.to(self.device).long()
417
+ # noise = torch.randn_like(z_start)
418
+ # z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
419
+ # diffusion_row.append(self.decode_first_stage(z_noisy))
420
+
421
+ # diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
422
+ # diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
423
+ # diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
424
+ # diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
425
+ # log["diffusion_row"] = diffusion_grid
426
+
427
+ # if sample:
428
+ # # get denoise row
429
+ # samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
430
+ # batch_size=N, ddim=use_ddim,
431
+ # ddim_steps=ddim_steps, eta=ddim_eta)
432
+ # x_samples = self.decode_first_stage(samples)
433
+ # log["samples"] = x_samples
434
+ # if plot_denoise_rows:
435
+ # denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
436
+ # log["denoise_row"] = denoise_grid
437
+
438
+ # if unconditional_guidance_scale > 1.0:
439
+ # uc_cross = self.get_unconditional_conditioning(N,hint_image)
440
+ # uc_cat = c_cat # torch.zeros_like(c_cat)
441
+ # uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
442
+ # samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
443
+ # batch_size=N, ddim=use_ddim,
444
+ # ddim_steps=ddim_steps, eta=ddim_eta,
445
+ # unconditional_guidance_scale=unconditional_guidance_scale,
446
+ # unconditional_conditioning=uc_full,
447
+ # )
448
+ # x_samples_cfg = self.decode_first_stage(samples_cfg)
449
+ # log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
450
+
451
+ # return log
452
+
453
+ @torch.no_grad()
454
+ def log_images(self, batch, N=4, n_row=2, sample=False, ddim_steps=50, ddim_eta=0.0, return_keys=None,
455
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
456
+ plot_diffusion_rows=False, unconditional_guidance_scale=9.0, unconditional_guidance_label=None,
457
+ use_ema_scope=True,
458
+ **kwargs):
459
+ use_ddim = ddim_steps is not None
460
+
461
+ log = dict()
462
+ z,mask,masked_image_latents, c = self.get_input(batch, self.first_stage_key, bs=N, )
463
+ c_cat, c = c["c_concat"][0][:N], c["c_crossattn"][0][:N]
464
+ N = min(z.shape[0], N)
465
+ n_row = min(z.shape[0], n_row)
466
+ log["reconstruction"] = self.decode_first_stage(z)
467
+ log["control"] = c_cat * 2.0 - 1.0
468
+ log["conditioning"] = log_txt_as_img((512, 512),batch[self.masked_image], batch[self.cond_stage_key], size=16)
469
+
470
+ if plot_diffusion_rows:
471
+ # get diffusion row
472
+ diffusion_row = list()
473
+ z_start = z[:n_row]
474
+ for t in range(self.num_timesteps):
475
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
476
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
477
+ t = t.to(self.device).long()
478
+ noise = torch.randn_like(z_start)
479
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
480
+ diffusion_row.append(self.decode_first_stage(z_noisy))
481
+
482
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
483
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
484
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
485
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
486
+ log["diffusion_row"] = diffusion_grid
487
+
488
+ if sample:
489
+ # get denoise row
490
+ samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},mask=mask,masked_image_latents=masked_image_latents,
491
+ batch_size=N, ddim=use_ddim,
492
+ ddim_steps=ddim_steps, eta=ddim_eta)
493
+ x_samples = self.decode_first_stage(samples)
494
+ log["samples"] = x_samples
495
+ if plot_denoise_rows:
496
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
497
+ log["denoise_row"] = denoise_grid
498
+
499
+ if unconditional_guidance_scale > 1.0:
500
+ uc_cross = self.get_unconditional_conditioning(N)
501
+ uc_cat = c_cat # torch.zeros_like(c_cat)
502
+ uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
503
+ samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},mask=mask,masked_image_latents=masked_image_latents,
504
+ batch_size=N, ddim=use_ddim,
505
+ ddim_steps=ddim_steps, eta=ddim_eta,
506
+ unconditional_guidance_scale=unconditional_guidance_scale,
507
+ unconditional_conditioning=uc_full,
508
+ )
509
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
510
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
511
+
512
+ return log
513
+ @torch.no_grad()
514
+ def sample_log(self, cond,mask,masked_image_latents, batch_size, ddim, ddim_steps, **kwargs):
515
+ ddim_sampler = DDIMSampler(self)
516
+ b, c, h, w = cond["c_concat"][0].shape
517
+ shape = (self.channels, h // 8, w // 8)
518
+ samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, shape, cond,mask=mask,masked_image_latents=masked_image_latents, verbose=False, **kwargs)
519
+ return samples, intermediates
520
+
521
+ def configure_optimizers(self):
522
+ lr = self.learning_rate
523
+ params = list(self.control_model.parameters())
524
+ # head_params=list()
525
+ # for name,param in self.control_model.named_parameters(): #self.model.named_parameters():
526
+ # if "dcn" in name:
527
+ # # print(name)
528
+ # head_params.append(param)
529
+ # # params = list(self.control_model.parameters())+head_params
530
+ # params = head_params
531
+ if not self.sd_locked:
532
+ params += list(self.model.diffusion_model.output_blocks.parameters())
533
+ params += list(self.model.diffusion_model.out.parameters())
534
+ opt = torch.optim.AdamW(params, lr=lr)
535
+ return opt
536
+
537
+ def low_vram_shift(self, is_diffusing):
538
+ if is_diffusing:
539
+ self.model = self.model.cuda()
540
+ self.control_model = self.control_model.cuda()
541
+ self.first_stage_model = self.first_stage_model.cpu()
542
+ self.cond_stage_model = self.cond_stage_model.cpu()
543
+ else:
544
+ self.model = self.model.cpu()
545
+ self.control_model = self.control_model.cpu()
546
+ self.first_stage_model = self.first_stage_model.cuda()
547
+ self.cond_stage_model = self.cond_stage_model.cuda()
Control-Color/cldm/ddim_haced_sag_step.py ADDED
@@ -0,0 +1,494 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+
3
+ import torch
4
+ import numpy as np
5
+ from tqdm import tqdm
6
+
7
+ from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
8
+ import torch.nn.functional as F
9
+
10
+ import cv2
11
+
12
+ import einops
13
+ # Gaussian blur
14
+ def gaussian_blur_2d(img, kernel_size, sigma):
15
+ ksize_half = (kernel_size - 1) * 0.5
16
+
17
+ x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size)
18
+
19
+ pdf = torch.exp(-0.5 * (x / sigma).pow(2))
20
+
21
+ x_kernel = pdf / pdf.sum()
22
+ x_kernel = x_kernel.to(device=img.device, dtype=img.dtype)
23
+
24
+ kernel2d = torch.mm(x_kernel[:, None], x_kernel[None, :])
25
+ kernel2d = kernel2d.expand(img.shape[-3], 1, kernel2d.shape[0], kernel2d.shape[1])
26
+
27
+ padding = [kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2]
28
+
29
+ img = F.pad(img, padding, mode="reflect")
30
+ img = F.conv2d(img, kernel2d, groups=img.shape[-3])
31
+
32
+ return img
33
+
34
+ # processes and stores attention probabilities
35
+ class CrossAttnStoreProcessor:
36
+ def __init__(self):
37
+ self.attention_probs = None
38
+
39
+ def __call__(
40
+ self,
41
+ attn,
42
+ hidden_states,
43
+ encoder_hidden_states=None,
44
+ attention_mask=None,
45
+ ):
46
+ batch_size, sequence_length, _ = hidden_states.shape
47
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
48
+ query = attn.to_q(hidden_states)
49
+
50
+ if encoder_hidden_states is None:
51
+ encoder_hidden_states = hidden_states
52
+ elif attn.norm_cross:
53
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
54
+
55
+ key = attn.to_k(encoder_hidden_states)
56
+ value = attn.to_v(encoder_hidden_states)
57
+
58
+ query = attn.head_to_batch_dim(query)
59
+ key = attn.head_to_batch_dim(key)
60
+ value = attn.head_to_batch_dim(value)
61
+
62
+ self.attention_probs = attn.get_attention_scores(query, key, attention_mask)
63
+ hidden_states = torch.bmm(self.attention_probs, value)
64
+ hidden_states = attn.batch_to_head_dim(hidden_states)
65
+
66
+ # linear proj
67
+ hidden_states = attn.to_out[0](hidden_states)
68
+ # dropout
69
+ hidden_states = attn.to_out[1](hidden_states)
70
+
71
+ return hidden_states
72
+
73
+ class DDIMSampler(object):
74
+ def __init__(self, model, schedule="linear", **kwargs):
75
+ super().__init__()
76
+ self.model = model
77
+ self.ddpm_num_timesteps = model.num_timesteps
78
+ self.schedule = schedule
79
+
80
+ def register_buffer(self, name, attr):
81
+ if type(attr) == torch.Tensor:
82
+ if attr.device != torch.device("cuda"):
83
+ attr = attr.to(torch.device("cuda"))
84
+ setattr(self, name, attr)
85
+
86
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
87
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
88
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
89
+ alphas_cumprod = self.model.alphas_cumprod
90
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
91
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
92
+
93
+ self.register_buffer('betas', to_torch(self.model.betas))
94
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
95
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
96
+
97
+ # calculations for diffusion q(x_t | x_{t-1}) and others
98
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
99
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
100
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
101
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
102
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
103
+
104
+ # ddim sampling parameters
105
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
106
+ ddim_timesteps=self.ddim_timesteps,
107
+ eta=ddim_eta,verbose=verbose)
108
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
109
+ self.register_buffer('ddim_alphas', ddim_alphas)
110
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
111
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
112
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
113
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
114
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
115
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
116
+
117
+ @torch.no_grad()
118
+ def sample(self,
119
+ model,
120
+ S,
121
+ batch_size,
122
+ shape,
123
+ conditioning=None,
124
+ callback=None,
125
+ normals_sequence=None,
126
+ img_callback=None,
127
+ quantize_x0=False,
128
+ eta=0.,
129
+ mask=None,
130
+ masked_image_latents=None,
131
+ x0=None,
132
+ temperature=1.,
133
+ noise_dropout=0.,
134
+ score_corrector=None,
135
+ corrector_kwargs=None,
136
+ verbose=True,
137
+ x_T=None,
138
+ log_every_t=100,
139
+ unconditional_guidance_scale=1.,
140
+ sag_scale=0.75,
141
+ SAG_influence_step=600,
142
+ noise = None,
143
+ unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
144
+ dynamic_threshold=None,
145
+ ucg_schedule=None,
146
+ **kwargs
147
+ ):
148
+ if conditioning is not None:
149
+ if isinstance(conditioning, dict):
150
+ ctmp = conditioning[list(conditioning.keys())[0]]
151
+ while isinstance(ctmp, list): ctmp = ctmp[0]
152
+ cbs = ctmp.shape[0]
153
+ if cbs != batch_size:
154
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
155
+
156
+ elif isinstance(conditioning, list):
157
+ for ctmp in conditioning:
158
+ if ctmp.shape[0] != batch_size:
159
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
160
+
161
+ else:
162
+ if conditioning.shape[0] != batch_size:
163
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
164
+
165
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
166
+ # sampling
167
+ # print(shape)
168
+ C, H, W = shape
169
+ size = (batch_size, C, H, W)
170
+ print(f'Data shape for DDIM sampling is {size}, eta {eta}')
171
+
172
+ samples, intermediates = self.ddim_sampling(model,conditioning, size,
173
+ callback=callback,
174
+ img_callback=img_callback,
175
+ quantize_denoised=quantize_x0,
176
+ mask=mask,masked_image_latents=masked_image_latents, x0=x0,
177
+ ddim_use_original_steps=False,
178
+ noise_dropout=noise_dropout,
179
+ temperature=temperature,
180
+ score_corrector=score_corrector,
181
+ corrector_kwargs=corrector_kwargs,
182
+ x_T=x_T,
183
+ log_every_t=log_every_t,
184
+ unconditional_guidance_scale=unconditional_guidance_scale,
185
+ sag_scale = sag_scale,
186
+ SAG_influence_step = SAG_influence_step,
187
+ noise = noise,
188
+ unconditional_conditioning=unconditional_conditioning,
189
+ dynamic_threshold=dynamic_threshold,
190
+ ucg_schedule=ucg_schedule
191
+ )
192
+ return samples, intermediates
193
+
194
+ def add_noise(self,
195
+ original_samples: torch.FloatTensor,
196
+ noise: torch.FloatTensor,
197
+ timesteps: torch.IntTensor,
198
+ ) -> torch.FloatTensor:
199
+ betas = torch.linspace(0.00085, 0.0120, 1000, dtype=torch.float32)
200
+ alphas = 1.0 - betas
201
+ alphas_cumprod = torch.cumprod(alphas, dim=0)
202
+ alphas_cumprod = alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
203
+ timesteps = timesteps.to(original_samples.device)
204
+
205
+ sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
206
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
207
+ while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
208
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
209
+
210
+ sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
211
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
212
+ while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
213
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
214
+
215
+ noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
216
+
217
+ return noisy_samples
218
+
219
+
220
+ def sag_masking(self, original_latents,model_output,x, attn_map, map_size, t, eps):
221
+ # Same masking process as in SAG paper: https://arxiv.org/pdf/2210.00939.pdf
222
+ bh, hw1, hw2 = attn_map.shape
223
+ b, latent_channel, latent_h, latent_w = original_latents.shape
224
+ h = 4 #self.unet.config.attention_head_dim
225
+ if isinstance(h, list):
226
+ h = h[-1]
227
+ attn_map = attn_map.reshape(b, h, hw1, hw2)
228
+ attn_mask = attn_map.mean(1, keepdim=False).sum(1, keepdim=False) > 1.0
229
+ attn_mask = (
230
+ attn_mask.reshape(b, map_size[0], map_size[1])
231
+ .unsqueeze(1)
232
+ .repeat(1, latent_channel, 1, 1)
233
+ .type(attn_map.dtype)
234
+ )
235
+ attn_mask = F.interpolate(attn_mask, (latent_h, latent_w))
236
+ degraded_latents = gaussian_blur_2d(original_latents, kernel_size=9, sigma=1.0)
237
+ degraded_latents = degraded_latents * attn_mask + original_latents * (1 - attn_mask) #x#original_latents
238
+
239
+ return degraded_latents
240
+
241
+ def pred_epsilon(self, sample, model_output, timestep):
242
+ alpha_prod_t = timestep
243
+
244
+ beta_prod_t = 1 - alpha_prod_t
245
+ # print(self.model.parameterization)#eps
246
+ if self.model.parameterization == "eps":
247
+ pred_eps = model_output
248
+ elif self.model.parameterization == "sample":
249
+ pred_eps = (sample - (alpha_prod_t**0.5) * model_output) / (beta_prod_t**0.5)
250
+ elif self.model.parameterization == "v":
251
+ pred_eps = (beta_prod_t**0.5) * sample + (alpha_prod_t**0.5) * model_output
252
+ else:
253
+ raise ValueError(
254
+ f"prediction_type given as {self.scheduler.config.prediction_type} must be one of `eps`, `sample`,"
255
+ " or `v`"
256
+ )
257
+
258
+ return pred_eps
259
+
260
+ @torch.no_grad()
261
+ def ddim_sampling(self,model, cond, shape,
262
+ x_T=None, ddim_use_original_steps=False,
263
+ callback=None, timesteps=None, quantize_denoised=False,
264
+ mask=None,masked_image_latents=None, x0=None, img_callback=None, log_every_t=100,
265
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
266
+ unconditional_guidance_scale=1.,sag_scale = 0.75, SAG_influence_step=600, sag_enable = True, noise = None, unconditional_conditioning=None, dynamic_threshold=None,
267
+ ucg_schedule=None):
268
+ device = self.model.betas.device
269
+ b = shape[0]
270
+ if x_T is None:
271
+ img = torch.randn(shape, device=device)
272
+ else:
273
+ img = x_T
274
+ # timesteps =100
275
+ if timesteps is None:
276
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
277
+ elif timesteps is not None and not ddim_use_original_steps:
278
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
279
+ timesteps = self.ddim_timesteps[:subset_end]
280
+ # timesteps=timesteps[:-3]
281
+ # print("timesteps",timesteps)
282
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
283
+ time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
284
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
285
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
286
+
287
+ iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
288
+
289
+ for i, step in enumerate(iterator):
290
+ # print(step)
291
+ if step > SAG_influence_step:
292
+ sag_enable_t=True
293
+ else:
294
+ sag_enable_t=False
295
+ index = total_steps - i - 1
296
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
297
+
298
+ if ucg_schedule is not None:
299
+ assert len(ucg_schedule) == len(time_range)
300
+ unconditional_guidance_scale = ucg_schedule[i]
301
+
302
+ outs = self.p_sample_ddim(img,mask,masked_image_latents, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
303
+ quantize_denoised=quantize_denoised, temperature=temperature,
304
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
305
+ corrector_kwargs=corrector_kwargs,
306
+ unconditional_guidance_scale=unconditional_guidance_scale,
307
+ sag_scale = sag_scale,
308
+ sag_enable=sag_enable_t,
309
+ noise =noise,
310
+ unconditional_conditioning=unconditional_conditioning,
311
+ dynamic_threshold=dynamic_threshold)
312
+ img, pred_x0 = outs
313
+ if callback: callback(i)
314
+ if img_callback: img_callback(pred_x0, i)
315
+
316
+ if index % log_every_t == 0 or index == total_steps - 1:
317
+ intermediates['x_inter'].append(img)
318
+ intermediates['pred_x0'].append(pred_x0)
319
+ x_samples = model.decode_first_stage(img)
320
+ x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
321
+
322
+ #single image replace L channel
323
+ results_ori = [x_samples[i] for i in range(1)]
324
+ # results_ori=[i for i in results_ori]
325
+
326
+ # cv2.imwrite("result_ori"+str(step)+".png",cv2.cvtColor(results_ori[0],cv2.COLOR_RGB2BGR))
327
+ return img, intermediates
328
+
329
+ @torch.no_grad()
330
+ def p_sample_ddim(self, x,mask,masked_image_latents, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
331
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
332
+ unconditional_guidance_scale=1.,sag_scale = 0.75, sag_enable=True, noise=None, unconditional_conditioning=None,
333
+ dynamic_threshold=None):
334
+ b, *_, device = *x.shape, x.device
335
+
336
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
337
+ model_output = self.model.apply_model(x,mask,masked_image_latents, t, c)
338
+ else:
339
+ model_t = self.model.apply_model(x,mask,masked_image_latents, t, c)
340
+ model_uncond = self.model.apply_model(x,mask,masked_image_latents, t, unconditional_conditioning)
341
+ model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
342
+
343
+ if self.model.parameterization == "v":
344
+ e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
345
+ else:
346
+ e_t = model_output
347
+
348
+ if score_corrector is not None:
349
+ assert self.model.parameterization == "eps", 'not implemented'
350
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
351
+
352
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
353
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
354
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
355
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
356
+ # select parameters corresponding to the currently considered timestep
357
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
358
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
359
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
360
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
361
+
362
+ # current prediction for x_0
363
+ if self.model.parameterization != "v":
364
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
365
+ else:
366
+ pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
367
+
368
+ if quantize_denoised:
369
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
370
+
371
+ if dynamic_threshold is not None:
372
+ raise NotImplementedError()
373
+ if sag_enable == True:
374
+ uncond_attn, cond_attn = self.model.model.diffusion_model.middle_block[1].transformer_blocks[0].attn1.attention_probs.chunk(2)
375
+ # self-attention-based degrading of latents
376
+ map_size = self.model.model.diffusion_model.middle_block[1].map_size
377
+ degraded_latents = self.sag_masking(
378
+ pred_x0,model_output,x,uncond_attn, map_size, t, eps = noise, #self.pred_epsilon(x, model_uncond, self.model.alphas_cumprod[t]),#noise
379
+ )
380
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
381
+ degraded_model_output = self.model.apply_model(degraded_latents,mask,masked_image_latents, t, c)
382
+ else:
383
+ degraded_model_t = self.model.apply_model(degraded_latents,mask,masked_image_latents, t, c)
384
+ degraded_model_uncond = self.model.apply_model(degraded_latents,mask,masked_image_latents, t, unconditional_conditioning)
385
+ degraded_model_output = degraded_model_uncond + unconditional_guidance_scale * (degraded_model_t - degraded_model_uncond)
386
+ # print("sag_scale",sag_scale)
387
+ model_output += sag_scale * (model_output - degraded_model_output)
388
+ # model_output = (1-sag_scale) * model_output + sag_scale * degraded_model_output
389
+
390
+ # current prediction for x_0
391
+ if self.model.parameterization != "v":
392
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
393
+ else:
394
+ pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
395
+
396
+ if quantize_denoised:
397
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
398
+
399
+ if dynamic_threshold is not None:
400
+ raise NotImplementedError()
401
+
402
+ # direction pointing to x_t
403
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
404
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
405
+ if noise_dropout > 0.:
406
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
407
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
408
+ return x_prev, pred_x0
409
+
410
+ @torch.no_grad()
411
+ def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
412
+ unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
413
+ timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
414
+ num_reference_steps = timesteps.shape[0]
415
+
416
+ assert t_enc <= num_reference_steps
417
+ num_steps = t_enc
418
+
419
+ if use_original_steps:
420
+ alphas_next = self.alphas_cumprod[:num_steps]
421
+ alphas = self.alphas_cumprod_prev[:num_steps]
422
+ else:
423
+ alphas_next = self.ddim_alphas[:num_steps]
424
+ alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
425
+
426
+ x_next = x0
427
+ intermediates = []
428
+ inter_steps = []
429
+ for i in tqdm(range(num_steps), desc='Encoding Image'):
430
+ t = torch.full((x0.shape[0],), timesteps[i], device=self.model.device, dtype=torch.long)
431
+ if unconditional_guidance_scale == 1.:
432
+ noise_pred = self.model.apply_model(x_next, t, c)
433
+ else:
434
+ assert unconditional_conditioning is not None
435
+ e_t_uncond, noise_pred = torch.chunk(
436
+ self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
437
+ torch.cat((unconditional_conditioning, c))), 2)
438
+ noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
439
+
440
+ xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
441
+ weighted_noise_pred = alphas_next[i].sqrt() * (
442
+ (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
443
+ x_next = xt_weighted + weighted_noise_pred
444
+ if return_intermediates and i % (
445
+ num_steps // return_intermediates) == 0 and i < num_steps - 1:
446
+ intermediates.append(x_next)
447
+ inter_steps.append(i)
448
+ elif return_intermediates and i >= num_steps - 2:
449
+ intermediates.append(x_next)
450
+ inter_steps.append(i)
451
+ if callback: callback(i)
452
+
453
+ out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
454
+ if return_intermediates:
455
+ out.update({'intermediates': intermediates})
456
+ return x_next, out
457
+
458
+ @torch.no_grad()
459
+ def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
460
+ # fast, but does not allow for exact reconstruction
461
+ # t serves as an index to gather the correct alphas
462
+ if use_original_steps:
463
+ sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
464
+ sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
465
+ else:
466
+ sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
467
+ sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
468
+
469
+ if noise is None:
470
+ noise = torch.randn_like(x0)
471
+ return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
472
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
473
+
474
+ @torch.no_grad()
475
+ def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
476
+ use_original_steps=False, callback=None):
477
+
478
+ timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
479
+ timesteps = timesteps[:t_start]
480
+
481
+ time_range = np.flip(timesteps)
482
+ total_steps = timesteps.shape[0]
483
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
484
+
485
+ iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
486
+ x_dec = x_latent
487
+ for i, step in enumerate(iterator):
488
+ index = total_steps - i - 1
489
+ ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
490
+ x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
491
+ unconditional_guidance_scale=unconditional_guidance_scale,
492
+ unconditional_conditioning=unconditional_conditioning)
493
+ if callback: callback(i)
494
+ return x_dec
Control-Color/cldm/ddim_hacked_sag.py ADDED
@@ -0,0 +1,543 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+
3
+ import torch
4
+ import numpy as np
5
+ from tqdm import tqdm
6
+
7
+ from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
8
+ import torch.nn.functional as F
9
+
10
+ import cv2
11
+ # Gaussian blur
12
+ def gaussian_blur_2d(img, kernel_size, sigma):
13
+ ksize_half = (kernel_size - 1) * 0.5
14
+
15
+ x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size)
16
+
17
+ pdf = torch.exp(-0.5 * (x / sigma).pow(2))
18
+
19
+ x_kernel = pdf / pdf.sum()
20
+ x_kernel = x_kernel.to(device=img.device, dtype=img.dtype)
21
+
22
+ kernel2d = torch.mm(x_kernel[:, None], x_kernel[None, :])
23
+ kernel2d = kernel2d.expand(img.shape[-3], 1, kernel2d.shape[0], kernel2d.shape[1])
24
+
25
+ padding = [kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2]
26
+
27
+ img = F.pad(img, padding, mode="reflect")
28
+ img = F.conv2d(img, kernel2d, groups=img.shape[-3])
29
+
30
+ return img
31
+
32
+ # processes and stores attention probabilities
33
+ class CrossAttnStoreProcessor:
34
+ def __init__(self):
35
+ self.attention_probs = None
36
+
37
+ def __call__(
38
+ self,
39
+ attn,
40
+ hidden_states,
41
+ encoder_hidden_states=None,
42
+ attention_mask=None,
43
+ ):
44
+ batch_size, sequence_length, _ = hidden_states.shape
45
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
46
+ query = attn.to_q(hidden_states)
47
+
48
+ if encoder_hidden_states is None:
49
+ encoder_hidden_states = hidden_states
50
+ elif attn.norm_cross:
51
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
52
+
53
+ key = attn.to_k(encoder_hidden_states)
54
+ value = attn.to_v(encoder_hidden_states)
55
+
56
+ query = attn.head_to_batch_dim(query)
57
+ key = attn.head_to_batch_dim(key)
58
+ value = attn.head_to_batch_dim(value)
59
+
60
+ self.attention_probs = attn.get_attention_scores(query, key, attention_mask)
61
+ hidden_states = torch.bmm(self.attention_probs, value)
62
+ hidden_states = attn.batch_to_head_dim(hidden_states)
63
+
64
+ # linear proj
65
+ hidden_states = attn.to_out[0](hidden_states)
66
+ # dropout
67
+ hidden_states = attn.to_out[1](hidden_states)
68
+
69
+ return hidden_states
70
+
71
+ class DDIMSampler(object):
72
+ def __init__(self, model, schedule="linear", **kwargs):
73
+ super().__init__()
74
+ self.model = model
75
+ self.ddpm_num_timesteps = model.num_timesteps
76
+ self.schedule = schedule
77
+
78
+ def register_buffer(self, name, attr):
79
+ if type(attr) == torch.Tensor:
80
+ if attr.device != torch.device("cuda"):
81
+ attr = attr.to(torch.device("cuda"))
82
+ setattr(self, name, attr)
83
+
84
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
85
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
86
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
87
+ alphas_cumprod = self.model.alphas_cumprod
88
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
89
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
90
+
91
+ self.register_buffer('betas', to_torch(self.model.betas))
92
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
93
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
94
+
95
+ # calculations for diffusion q(x_t | x_{t-1}) and others
96
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
97
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
98
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
99
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
100
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
101
+
102
+ # ddim sampling parameters
103
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
104
+ ddim_timesteps=self.ddim_timesteps,
105
+ eta=ddim_eta,verbose=verbose)
106
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
107
+ self.register_buffer('ddim_alphas', ddim_alphas)
108
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
109
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
110
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
111
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
112
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
113
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
114
+
115
+ @torch.no_grad()
116
+ def sample(self,
117
+ S,
118
+ batch_size,
119
+ shape,
120
+ conditioning=None,
121
+ callback=None,
122
+ normals_sequence=None,
123
+ img_callback=None,
124
+ quantize_x0=False,
125
+ eta=0.,
126
+ mask=None,
127
+ masked_image_latents=None,
128
+ x0=None,
129
+ temperature=1.,
130
+ noise_dropout=0.,
131
+ score_corrector=None,
132
+ corrector_kwargs=None,
133
+ verbose=True,
134
+ x_T=None,
135
+ log_every_t=100,
136
+ unconditional_guidance_scale=1.,
137
+ sag_scale=0.75,
138
+ SAG_influence_step=600,
139
+ noise = None,
140
+ unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
141
+ dynamic_threshold=None,
142
+ ucg_schedule=None,
143
+ **kwargs
144
+ ):
145
+ if conditioning is not None:
146
+ if isinstance(conditioning, dict):
147
+ ctmp = conditioning[list(conditioning.keys())[0]]
148
+ while isinstance(ctmp, list): ctmp = ctmp[0]
149
+ cbs = ctmp.shape[0]
150
+ if cbs != batch_size:
151
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
152
+
153
+ elif isinstance(conditioning, list):
154
+ for ctmp in conditioning:
155
+ if ctmp.shape[0] != batch_size:
156
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
157
+
158
+ else:
159
+ if conditioning.shape[0] != batch_size:
160
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
161
+
162
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
163
+ # sampling
164
+ C, H, W = shape
165
+ size = (batch_size, C, H, W)
166
+ print(f'Data shape for DDIM sampling is {size}, eta {eta}')
167
+
168
+ samples, intermediates = self.ddim_sampling(conditioning, size,
169
+ callback=callback,
170
+ img_callback=img_callback,
171
+ quantize_denoised=quantize_x0,
172
+ mask=mask,masked_image_latents=masked_image_latents, x0=x0,
173
+ ddim_use_original_steps=False,
174
+ noise_dropout=noise_dropout,
175
+ temperature=temperature,
176
+ score_corrector=score_corrector,
177
+ corrector_kwargs=corrector_kwargs,
178
+ x_T=x_T,
179
+ log_every_t=log_every_t,
180
+ unconditional_guidance_scale=unconditional_guidance_scale,
181
+ sag_scale = sag_scale,
182
+ SAG_influence_step = SAG_influence_step,
183
+ noise = noise,
184
+ unconditional_conditioning=unconditional_conditioning,
185
+ dynamic_threshold=dynamic_threshold,
186
+ ucg_schedule=ucg_schedule
187
+ )
188
+ return samples, intermediates
189
+
190
+ def add_noise(self,
191
+ original_samples: torch.FloatTensor,
192
+ noise: torch.FloatTensor,
193
+ timesteps: torch.IntTensor,
194
+ ) -> torch.FloatTensor:
195
+ betas = torch.linspace(0.00085, 0.0120, 1000, dtype=torch.float32)
196
+ alphas = 1.0 - betas
197
+ alphas_cumprod = torch.cumprod(alphas, dim=0)
198
+ alphas_cumprod = alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
199
+ timesteps = timesteps.to(original_samples.device)
200
+
201
+ sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
202
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
203
+ while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
204
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
205
+
206
+ sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
207
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
208
+ while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
209
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
210
+
211
+ noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
212
+
213
+ return noisy_samples
214
+ # def add_noise(
215
+ # self,
216
+ # original_samples: torch.FloatTensor,
217
+ # noise: torch.FloatTensor,
218
+ # timesteps: torch.FloatTensor,
219
+ # sigma_t,
220
+ # ) -> torch.FloatTensor:
221
+
222
+ # # Make sure sigmas and timesteps have the same device and dtype as original_samples
223
+
224
+ # sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
225
+ # if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
226
+ # # mps does not support float64
227
+ # schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
228
+ # timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
229
+ # else:
230
+ # schedule_timesteps = self.timesteps.to(original_samples.device)
231
+ # timesteps = timesteps.to(original_samples.device)
232
+
233
+ # step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
234
+
235
+ # sigma = sigmas[step_indices].flatten()
236
+ # while len(sigma.shape) < len(original_samples.shape):
237
+ # sigma = sigma.unsqueeze(-1)
238
+ # # print(sigma_t)
239
+ # noisy_samples = original_samples + noise * sigma_t
240
+ # return noisy_samples
241
+
242
+
243
+ def sag_masking(self, original_latents,model_output,x, attn_map, map_size, t, eps):
244
+ # Same masking process as in SAG paper: https://arxiv.org/pdf/2210.00939.pdf
245
+ bh, hw1, hw2 = attn_map.shape
246
+ b, latent_channel, latent_h, latent_w = original_latents.shape
247
+ h = 4 #self.unet.config.attention_head_dim
248
+ if isinstance(h, list):
249
+ h = h[-1]
250
+ # print(attn_map.shape)
251
+ # print(original_latents.shape)
252
+ # print(map_size)
253
+ # Produce attention mask
254
+ attn_map = attn_map.reshape(b, h, hw1, hw2)
255
+ attn_mask = attn_map.mean(1, keepdim=False).sum(1, keepdim=False) > 1.0
256
+ # print(attn_mask.shape)
257
+ attn_mask = (
258
+ attn_mask.reshape(b, map_size[0], map_size[1])
259
+ .unsqueeze(1)
260
+ .repeat(1, latent_channel, 1, 1)
261
+ .type(attn_map.dtype)
262
+ )
263
+ attn_mask = F.interpolate(attn_mask, (latent_h, latent_w))
264
+ # print(attn_mask.shape)
265
+ # cv2.imwrite("attn_mask.png",attn_mask)
266
+ # Blur according to the self-attention mask
267
+ degraded_latents = gaussian_blur_2d(original_latents, kernel_size=9, sigma=1.0)
268
+ # degraded_latents = self.add_noise(degraded_latents, noise=eps, timesteps=t)#,sigma_t=sigma_t)
269
+ degraded_latents = degraded_latents * attn_mask + original_latents * (1 - attn_mask) #x#original_latents
270
+ # degraded_latents = self.model.get_x_t_from_start_and_t(degraded_latents,t,model_output)
271
+ # print(original_latents.shape)
272
+ # print(eps.shape)
273
+ # Noise it again to match the noise level
274
+ # print("t",t)
275
+ # degraded_latents = self.add_noise(degraded_latents, noise=eps, timesteps=t)#,sigma_t=sigma_t)
276
+
277
+ return degraded_latents
278
+
279
+ def pred_epsilon(self, sample, model_output, timestep):
280
+ alpha_prod_t = timestep
281
+
282
+ beta_prod_t = 1 - alpha_prod_t
283
+ # print(self.model.parameterization)#eps
284
+ if self.model.parameterization == "eps":
285
+ pred_eps = model_output
286
+ elif self.model.parameterization == "sample":
287
+ pred_eps = (sample - (alpha_prod_t**0.5) * model_output) / (beta_prod_t**0.5)
288
+ elif self.model.parameterization == "v":
289
+ pred_eps = (beta_prod_t**0.5) * sample + (alpha_prod_t**0.5) * model_output
290
+ else:
291
+ raise ValueError(
292
+ f"prediction_type given as {self.scheduler.config.prediction_type} must be one of `eps`, `sample`,"
293
+ " or `v`"
294
+ )
295
+
296
+ return pred_eps
297
+
298
+ @torch.no_grad()
299
+ def ddim_sampling(self, cond, shape,
300
+ x_T=None, ddim_use_original_steps=False,
301
+ callback=None, timesteps=None, quantize_denoised=False,
302
+ mask=None,masked_image_latents=None, x0=None, img_callback=None, log_every_t=100,
303
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
304
+ unconditional_guidance_scale=1.,sag_scale = 0.75, SAG_influence_step=600, sag_enable = True, noise = None, unconditional_conditioning=None, dynamic_threshold=None,
305
+ ucg_schedule=None):
306
+ device = self.model.betas.device
307
+ b = shape[0]
308
+ if x_T is None:
309
+ img = torch.randn(shape, device=device)
310
+ else:
311
+ img = x_T
312
+ # timesteps =100
313
+ if timesteps is None:
314
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
315
+ elif timesteps is not None and not ddim_use_original_steps:
316
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
317
+ timesteps = self.ddim_timesteps[:subset_end]
318
+ # timesteps=timesteps[:-3]
319
+ # print("timesteps",timesteps)
320
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
321
+ time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
322
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
323
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
324
+
325
+ iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
326
+
327
+ for i, step in enumerate(iterator):
328
+ print(step)
329
+ if step > SAG_influence_step:
330
+ sag_enable_t=True
331
+ else:
332
+ sag_enable_t=False
333
+ index = total_steps - i - 1
334
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
335
+
336
+ # if mask is not None:
337
+ # assert x0 is not None
338
+ # img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
339
+ # img = img_orig * mask + (1. - mask) * img
340
+
341
+ if ucg_schedule is not None:
342
+ assert len(ucg_schedule) == len(time_range)
343
+ unconditional_guidance_scale = ucg_schedule[i]
344
+
345
+ outs = self.p_sample_ddim(img,mask,masked_image_latents, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
346
+ quantize_denoised=quantize_denoised, temperature=temperature,
347
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
348
+ corrector_kwargs=corrector_kwargs,
349
+ unconditional_guidance_scale=unconditional_guidance_scale,
350
+ sag_scale = sag_scale,
351
+ sag_enable=sag_enable_t,
352
+ noise =noise,
353
+ unconditional_conditioning=unconditional_conditioning,
354
+ dynamic_threshold=dynamic_threshold)
355
+ img, pred_x0 = outs
356
+ if callback: callback(i)
357
+ if img_callback: img_callback(pred_x0, i)
358
+
359
+ if index % log_every_t == 0 or index == total_steps - 1:
360
+ intermediates['x_inter'].append(img)
361
+ intermediates['pred_x0'].append(pred_x0)
362
+
363
+ return img, intermediates
364
+
365
+ @torch.no_grad()
366
+ def p_sample_ddim(self, x,mask,masked_image_latents, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
367
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
368
+ unconditional_guidance_scale=1.,sag_scale = 0.75, sag_enable=True, noise=None, unconditional_conditioning=None,
369
+ dynamic_threshold=None):
370
+ b, *_, device = *x.shape, x.device
371
+
372
+ # map_size = None
373
+ # def get_map_size(module, input, output):
374
+ # nonlocal map_size
375
+ # map_size = output.shape[-2:]
376
+
377
+ # store_processor = CrossAttnStoreProcessor()
378
+ # for name, param in self.model.model.diffusion_model.named_parameters():
379
+ # print(name)
380
+ # self.model.control_model.middle_block[1].transformer_blocks[0].attn1.processor = store_processor
381
+ # print(self.model.model.diffusion_model.middle_block[1].transformer_blocks[0].attn1)
382
+ # self.model.model.diffusion_model.middle_block[1].transformer_blocks[0].attn1 = store_processor
383
+
384
+ # with self.model.model.diffusion_model.middle_block[1].register_forward_hook(get_map_size):
385
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
386
+ model_output = self.model.apply_model(x,mask,masked_image_latents, t, c)
387
+ else:
388
+ model_t = self.model.apply_model(x,mask,masked_image_latents, t, c)
389
+ model_uncond = self.model.apply_model(x,mask,masked_image_latents, t, unconditional_conditioning)
390
+ model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
391
+
392
+ if self.model.parameterization == "v":
393
+ e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
394
+ else:
395
+ e_t = model_output
396
+
397
+ if score_corrector is not None:
398
+ assert self.model.parameterization == "eps", 'not implemented'
399
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
400
+
401
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
402
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
403
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
404
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
405
+ # select parameters corresponding to the currently considered timestep
406
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
407
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
408
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
409
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
410
+
411
+ # current prediction for x_0
412
+ if self.model.parameterization != "v":
413
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
414
+ else:
415
+ pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
416
+
417
+ if quantize_denoised:
418
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
419
+
420
+ if dynamic_threshold is not None:
421
+ raise NotImplementedError()
422
+ if sag_enable == True:
423
+ uncond_attn, cond_attn = self.model.model.diffusion_model.middle_block[1].transformer_blocks[0].attn1.attention_probs.chunk(2)
424
+ # self-attention-based degrading of latents
425
+ map_size = self.model.model.diffusion_model.middle_block[1].map_size
426
+ degraded_latents = self.sag_masking(
427
+ pred_x0,model_output,x,uncond_attn, map_size, t, eps = noise, #self.pred_epsilon(x, model_uncond, self.model.alphas_cumprod[t]),#noise
428
+ )
429
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
430
+ degraded_model_output = self.model.apply_model(degraded_latents,mask,masked_image_latents, t, c)
431
+ else:
432
+ degraded_model_t = self.model.apply_model(degraded_latents,mask,masked_image_latents, t, c)
433
+ degraded_model_uncond = self.model.apply_model(degraded_latents,mask,masked_image_latents, t, unconditional_conditioning)
434
+ degraded_model_output = degraded_model_uncond + unconditional_guidance_scale * (degraded_model_t - degraded_model_uncond)
435
+ # print("sag_scale",sag_scale)
436
+ model_output += sag_scale * (model_output - degraded_model_output)
437
+ # model_output = (1-sag_scale) * model_output + sag_scale * degraded_model_output
438
+
439
+ # current prediction for x_0
440
+ if self.model.parameterization != "v":
441
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
442
+ else:
443
+ pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
444
+
445
+ if quantize_denoised:
446
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
447
+
448
+ if dynamic_threshold is not None:
449
+ raise NotImplementedError()
450
+
451
+ # direction pointing to x_t
452
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
453
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
454
+ if noise_dropout > 0.:
455
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
456
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
457
+ return x_prev, pred_x0
458
+
459
+ @torch.no_grad()
460
+ def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
461
+ unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
462
+ timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
463
+ num_reference_steps = timesteps.shape[0]
464
+
465
+ assert t_enc <= num_reference_steps
466
+ num_steps = t_enc
467
+
468
+ if use_original_steps:
469
+ alphas_next = self.alphas_cumprod[:num_steps]
470
+ alphas = self.alphas_cumprod_prev[:num_steps]
471
+ else:
472
+ alphas_next = self.ddim_alphas[:num_steps]
473
+ alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
474
+
475
+ x_next = x0
476
+ intermediates = []
477
+ inter_steps = []
478
+ for i in tqdm(range(num_steps), desc='Encoding Image'):
479
+ t = torch.full((x0.shape[0],), timesteps[i], device=self.model.device, dtype=torch.long)
480
+ if unconditional_guidance_scale == 1.:
481
+ noise_pred = self.model.apply_model(x_next, t, c)
482
+ else:
483
+ assert unconditional_conditioning is not None
484
+ e_t_uncond, noise_pred = torch.chunk(
485
+ self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
486
+ torch.cat((unconditional_conditioning, c))), 2)
487
+ noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
488
+
489
+ xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
490
+ weighted_noise_pred = alphas_next[i].sqrt() * (
491
+ (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
492
+ x_next = xt_weighted + weighted_noise_pred
493
+ if return_intermediates and i % (
494
+ num_steps // return_intermediates) == 0 and i < num_steps - 1:
495
+ intermediates.append(x_next)
496
+ inter_steps.append(i)
497
+ elif return_intermediates and i >= num_steps - 2:
498
+ intermediates.append(x_next)
499
+ inter_steps.append(i)
500
+ if callback: callback(i)
501
+
502
+ out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
503
+ if return_intermediates:
504
+ out.update({'intermediates': intermediates})
505
+ return x_next, out
506
+
507
+ @torch.no_grad()
508
+ def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
509
+ # fast, but does not allow for exact reconstruction
510
+ # t serves as an index to gather the correct alphas
511
+ if use_original_steps:
512
+ sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
513
+ sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
514
+ else:
515
+ sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
516
+ sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
517
+
518
+ if noise is None:
519
+ noise = torch.randn_like(x0)
520
+ return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
521
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
522
+
523
+ @torch.no_grad()
524
+ def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
525
+ use_original_steps=False, callback=None):
526
+
527
+ timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
528
+ timesteps = timesteps[:t_start]
529
+
530
+ time_range = np.flip(timesteps)
531
+ total_steps = timesteps.shape[0]
532
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
533
+
534
+ iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
535
+ x_dec = x_latent
536
+ for i, step in enumerate(iterator):
537
+ index = total_steps - i - 1
538
+ ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
539
+ x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
540
+ unconditional_guidance_scale=unconditional_guidance_scale,
541
+ unconditional_conditioning=unconditional_conditioning)
542
+ if callback: callback(i)
543
+ return x_dec
Control-Color/cldm/hack.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import einops
3
+
4
+ import ldm.modules.encoders.modules
5
+ import ldm.modules.attention
6
+
7
+ from transformers import logging
8
+ from ldm.modules.attention import default
9
+
10
+
11
+ def disable_verbosity():
12
+ logging.set_verbosity_error()
13
+ print('logging improved.')
14
+ return
15
+
16
+
17
+ def enable_sliced_attention():
18
+ ldm.modules.attention.CrossAttention.forward = _hacked_sliced_attentin_forward
19
+ print('Enabled sliced_attention.')
20
+ return
21
+
22
+
23
+ def hack_everything(clip_skip=0):
24
+ disable_verbosity()
25
+ ldm.modules.encoders.modules.FrozenCLIPEmbedder.forward = _hacked_clip_forward
26
+ ldm.modules.encoders.modules.FrozenCLIPEmbedder.clip_skip = clip_skip
27
+ print('Enabled clip hacks.')
28
+ return
29
+
30
+
31
+ # Written by Lvmin
32
+ def _hacked_clip_forward(self, text):
33
+ PAD = self.tokenizer.pad_token_id
34
+ EOS = self.tokenizer.eos_token_id
35
+ BOS = self.tokenizer.bos_token_id
36
+
37
+ def tokenize(t):
38
+ return self.tokenizer(t, truncation=False, add_special_tokens=False)["input_ids"]
39
+
40
+ def transformer_encode(t):
41
+ if self.clip_skip > 1:
42
+ rt = self.transformer(input_ids=t, output_hidden_states=True)
43
+ return self.transformer.text_model.final_layer_norm(rt.hidden_states[-self.clip_skip])
44
+ else:
45
+ return self.transformer(input_ids=t, output_hidden_states=False).last_hidden_state
46
+
47
+ def split(x):
48
+ return x[75 * 0: 75 * 1], x[75 * 1: 75 * 2], x[75 * 2: 75 * 3]
49
+
50
+ def pad(x, p, i):
51
+ return x[:i] if len(x) >= i else x + [p] * (i - len(x))
52
+
53
+ raw_tokens_list = tokenize(text)
54
+ tokens_list = []
55
+
56
+ for raw_tokens in raw_tokens_list:
57
+ raw_tokens_123 = split(raw_tokens)
58
+ raw_tokens_123 = [[BOS] + raw_tokens_i + [EOS] for raw_tokens_i in raw_tokens_123]
59
+ raw_tokens_123 = [pad(raw_tokens_i, PAD, 77) for raw_tokens_i in raw_tokens_123]
60
+ tokens_list.append(raw_tokens_123)
61
+
62
+ tokens_list = torch.IntTensor(tokens_list).to(self.device)
63
+
64
+ feed = einops.rearrange(tokens_list, 'b f i -> (b f) i')
65
+ y = transformer_encode(feed)
66
+ z = einops.rearrange(y, '(b f) i c -> b (f i) c', f=3)
67
+
68
+ return z
69
+
70
+
71
+ # Stolen from https://github.com/basujindal/stable-diffusion/blob/main/optimizedSD/splitAttention.py
72
+ def _hacked_sliced_attentin_forward(self, x, context=None, mask=None):
73
+ h = self.heads
74
+
75
+ q = self.to_q(x)
76
+ context = default(context, x)
77
+ k = self.to_k(context)
78
+ v = self.to_v(context)
79
+ del context, x
80
+
81
+ q, k, v = map(lambda t: einops.rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
82
+
83
+ limit = k.shape[0]
84
+ att_step = 1
85
+ q_chunks = list(torch.tensor_split(q, limit // att_step, dim=0))
86
+ k_chunks = list(torch.tensor_split(k, limit // att_step, dim=0))
87
+ v_chunks = list(torch.tensor_split(v, limit // att_step, dim=0))
88
+
89
+ q_chunks.reverse()
90
+ k_chunks.reverse()
91
+ v_chunks.reverse()
92
+ sim = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
93
+ del k, q, v
94
+ for i in range(0, limit, att_step):
95
+ q_buffer = q_chunks.pop()
96
+ k_buffer = k_chunks.pop()
97
+ v_buffer = v_chunks.pop()
98
+ sim_buffer = torch.einsum('b i d, b j d -> b i j', q_buffer, k_buffer) * self.scale
99
+
100
+ del k_buffer, q_buffer
101
+ # attention, what we cannot get enough of, by chunks
102
+
103
+ sim_buffer = sim_buffer.softmax(dim=-1)
104
+
105
+ sim_buffer = torch.einsum('b i j, b j d -> b i d', sim_buffer, v_buffer)
106
+ del v_buffer
107
+ sim[i:i + att_step, :, :] = sim_buffer
108
+
109
+ del sim_buffer
110
+ sim = einops.rearrange(sim, '(b h) n d -> b n (h d)', h=h)
111
+ return self.to_out(sim)
Control-Color/cldm/model.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+
4
+ from omegaconf import OmegaConf
5
+ from ldm.util import instantiate_from_config
6
+
7
+
8
+ def get_state_dict(d):
9
+ return d.get('state_dict', d)
10
+
11
+
12
+ def load_state_dict(ckpt_path, location='cpu'):
13
+ _, extension = os.path.splitext(ckpt_path)
14
+ if extension.lower() == ".safetensors":
15
+ import safetensors.torch
16
+ state_dict = safetensors.torch.load_file(ckpt_path, device=location)
17
+ else:
18
+ state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location)))
19
+ state_dict = get_state_dict(state_dict)
20
+ print(f'Loaded state_dict from [{ckpt_path}]')
21
+ return state_dict
22
+
23
+
24
+ def create_model(config_path):
25
+ config = OmegaConf.load(config_path)
26
+ model = instantiate_from_config(config.model).cpu()
27
+ print(f'Loaded model config from [{config_path}]')
28
+ return model
Control-Color/config.py ADDED
@@ -0,0 +1 @@
 
 
1
+ save_memory = False
Control-Color/ldm/__pycache__/util.cpython-38.pyc ADDED
Binary file (6.63 kB). View file
 
Control-Color/ldm/models/__pycache__/autoencoder.cpython-38.pyc ADDED
Binary file (7.63 kB). View file
 
Control-Color/ldm/models/__pycache__/autoencoder_train.cpython-38.pyc ADDED
Binary file (8.58 kB). View file
 
Control-Color/ldm/models/autoencoder.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import pytorch_lightning as pl
3
+ import torch.nn.functional as F
4
+ from contextlib import contextmanager
5
+
6
+ # from ldm.modules.diffusionmodules.model_window import Encoder, Decoder
7
+ from ldm.modules.diffusionmodules.model_brefore_dcn import Encoder, Decoder
8
+ from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
9
+
10
+ from ldm.util import instantiate_from_config
11
+ from ldm.modules.ema import LitEma
12
+
13
+
14
+ class AutoencoderKL(pl.LightningModule):
15
+ def __init__(self,
16
+ ddconfig,
17
+ lossconfig,
18
+ embed_dim,
19
+ ckpt_path=None,
20
+ ignore_keys=[],
21
+ image_key="image",
22
+ colorize_nlabels=None,
23
+ monitor=None,
24
+ ema_decay=None,
25
+ learn_logvar=False
26
+ ):
27
+ super().__init__()
28
+ self.learn_logvar = learn_logvar
29
+ self.image_key = image_key
30
+ self.encoder = Encoder(**ddconfig)
31
+ self.decoder = Decoder(**ddconfig)
32
+ self.loss = instantiate_from_config(lossconfig)
33
+ assert ddconfig["double_z"]
34
+ self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
35
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
36
+ self.embed_dim = embed_dim
37
+ if colorize_nlabels is not None:
38
+ assert type(colorize_nlabels)==int
39
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
40
+ if monitor is not None:
41
+ self.monitor = monitor
42
+
43
+ self.use_ema = ema_decay is not None
44
+ if self.use_ema:
45
+ self.ema_decay = ema_decay
46
+ assert 0. < ema_decay < 1.
47
+ self.model_ema = LitEma(self, decay=ema_decay)
48
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
49
+
50
+ if ckpt_path is not None:
51
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
52
+
53
+ def init_from_ckpt(self, path, ignore_keys=list()):
54
+ sd = torch.load(path, map_location="cpu")["state_dict"]
55
+ keys = list(sd.keys())
56
+ for k in keys:
57
+ for ik in ignore_keys:
58
+ if k.startswith(ik):
59
+ print("Deleting key {} from state_dict.".format(k))
60
+ del sd[k]
61
+ self.load_state_dict(sd, strict=False)
62
+ print(f"Restored from {path}")
63
+
64
+ @contextmanager
65
+ def ema_scope(self, context=None):
66
+ if self.use_ema:
67
+ self.model_ema.store(self.parameters())
68
+ self.model_ema.copy_to(self)
69
+ if context is not None:
70
+ print(f"{context}: Switched to EMA weights")
71
+ try:
72
+ yield None
73
+ finally:
74
+ if self.use_ema:
75
+ self.model_ema.restore(self.parameters())
76
+ if context is not None:
77
+ print(f"{context}: Restored training weights")
78
+
79
+ def on_train_batch_end(self, *args, **kwargs):
80
+ if self.use_ema:
81
+ self.model_ema(self)
82
+
83
+ def encode(self, x):
84
+ h = self.encoder(x)
85
+ moments = self.quant_conv(h)
86
+ posterior = DiagonalGaussianDistribution(moments)
87
+ return posterior
88
+
89
+ def decode(self, z):
90
+ z = self.post_quant_conv(z)
91
+ dec = self.decoder(z)
92
+ return dec
93
+
94
+ def forward(self, input, sample_posterior=True):
95
+ posterior = self.encode(input)
96
+ if sample_posterior:
97
+ z = posterior.sample()
98
+ else:
99
+ z = posterior.mode()
100
+ dec = self.decode(z)
101
+ return dec, posterior
102
+
103
+ def get_input(self, batch, k):
104
+ x = batch[k]
105
+ if len(x.shape) == 3:
106
+ x = x[..., None]
107
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
108
+ return x
109
+
110
+ def training_step(self, batch, batch_idx, optimizer_idx):
111
+ inputs = self.get_input(batch, self.image_key)
112
+ reconstructions, posterior = self(inputs)
113
+
114
+ if optimizer_idx == 0:
115
+ # train encoder+decoder+logvar
116
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
117
+ last_layer=self.get_last_layer(), split="train")
118
+ self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
119
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
120
+ return aeloss
121
+
122
+ if optimizer_idx == 1:
123
+ # train the discriminator
124
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
125
+ last_layer=self.get_last_layer(), split="train")
126
+
127
+ self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
128
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
129
+ return discloss
130
+
131
+ def validation_step(self, batch, batch_idx):
132
+ log_dict = self._validation_step(batch, batch_idx)
133
+ with self.ema_scope():
134
+ log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema")
135
+ return log_dict
136
+
137
+ def _validation_step(self, batch, batch_idx, postfix=""):
138
+ inputs = self.get_input(batch, self.image_key)
139
+ reconstructions, posterior = self(inputs)
140
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
141
+ last_layer=self.get_last_layer(), split="val"+postfix)
142
+
143
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
144
+ last_layer=self.get_last_layer(), split="val"+postfix)
145
+
146
+ self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
147
+ self.log_dict(log_dict_ae)
148
+ self.log_dict(log_dict_disc)
149
+ return self.log_dict
150
+
151
+ def configure_optimizers(self):
152
+ lr = self.learning_rate
153
+ ae_params_list = list(self.encoder.parameters()) + list(self.decoder.parameters()) + list(
154
+ self.quant_conv.parameters()) + list(self.post_quant_conv.parameters())
155
+ if self.learn_logvar:
156
+ print(f"{self.__class__.__name__}: Learning logvar")
157
+ ae_params_list.append(self.loss.logvar)
158
+ opt_ae = torch.optim.Adam(ae_params_list,
159
+ lr=lr, betas=(0.5, 0.9))
160
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
161
+ lr=lr, betas=(0.5, 0.9))
162
+ return [opt_ae, opt_disc], []
163
+
164
+ def get_last_layer(self):
165
+ return self.decoder.conv_out.weight
166
+
167
+ @torch.no_grad()
168
+ def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs):
169
+ log = dict()
170
+ x = self.get_input(batch, self.image_key)
171
+ x = x.to(self.device)
172
+ if not only_inputs:
173
+ xrec, posterior = self(x)
174
+ if x.shape[1] > 3:
175
+ # colorize with random projection
176
+ assert xrec.shape[1] > 3
177
+ x = self.to_rgb(x)
178
+ xrec = self.to_rgb(xrec)
179
+ log["samples"] = self.decode(torch.randn_like(posterior.sample()))
180
+ log["reconstructions"] = xrec
181
+ if log_ema or self.use_ema:
182
+ with self.ema_scope():
183
+ xrec_ema, posterior_ema = self(x)
184
+ if x.shape[1] > 3:
185
+ # colorize with random projection
186
+ assert xrec_ema.shape[1] > 3
187
+ xrec_ema = self.to_rgb(xrec_ema)
188
+ log["samples_ema"] = self.decode(torch.randn_like(posterior_ema.sample()))
189
+ log["reconstructions_ema"] = xrec_ema
190
+ log["inputs"] = x
191
+ return log
192
+
193
+ def to_rgb(self, x):
194
+ assert self.image_key == "segmentation"
195
+ if not hasattr(self, "colorize"):
196
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
197
+ x = F.conv2d(x, weight=self.colorize)
198
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
199
+ return x
200
+
201
+
202
+ class IdentityFirstStage(torch.nn.Module):
203
+ def __init__(self, *args, vq_interface=False, **kwargs):
204
+ self.vq_interface = vq_interface
205
+ super().__init__()
206
+
207
+ def encode(self, x, *args, **kwargs):
208
+ return x
209
+
210
+ def decode(self, x, *args, **kwargs):
211
+ return x
212
+
213
+ def quantize(self, x, *args, **kwargs):
214
+ if self.vq_interface:
215
+ return x, None, [None, None, None]
216
+ return x
217
+
218
+ def forward(self, x, *args, **kwargs):
219
+ return x
220
+
Control-Color/ldm/models/autoencoder_train.py ADDED
@@ -0,0 +1,299 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import pytorch_lightning as pl
3
+ import torch.nn.functional as F
4
+ from contextlib import contextmanager
5
+
6
+ from ldm.modules.diffusionmodules.model import Encoder, Decoder
7
+ from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
8
+
9
+ from ldm.util import instantiate_from_config
10
+ from ldm.modules.ema import LitEma
11
+
12
+ import random
13
+ import cv2
14
+
15
+ # from cldm.model import create_model, load_state_dict
16
+ # model = create_model('./models/cldm_v15_inpainting.yaml')
17
+ # resume_path = "/data/2023text2edit/ControlNet/ckpt_inpainting_from5625+5625/epoch0_global-step3750.ckpt"
18
+ # model.load_state_dict(load_state_dict(resume_path, location='cpu'),strict=True)
19
+ # model.half()
20
+ # model.cuda()
21
+
22
+ class AutoencoderKL(pl.LightningModule):
23
+ def __init__(self,
24
+ ddconfig,
25
+ lossconfig,
26
+ embed_dim,
27
+ ckpt_path=None,
28
+ ignore_keys=[],
29
+ image_key="input",
30
+ output_key="jpg",
31
+ gray_image_key="gray",
32
+ colorize_nlabels=None,
33
+ monitor=None,
34
+ ema_decay=None,
35
+ learn_logvar=False
36
+ ):
37
+ super().__init__()
38
+ self.learn_logvar = learn_logvar
39
+ self.image_key = image_key
40
+ self.gray_image_key = gray_image_key
41
+ self.output_key=output_key
42
+ self.encoder = Encoder(**ddconfig)
43
+ self.decoder = Decoder(**ddconfig)
44
+ self.loss = instantiate_from_config(lossconfig)
45
+ assert ddconfig["double_z"]
46
+ self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
47
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
48
+ self.embed_dim = embed_dim
49
+
50
+ # model = create_model('./models/cldm_v15_inpainting.yaml')
51
+ # resume_path = "/data/2023text2edit/ControlNet/ckpt_inpainting_from5625+5625/epoch0_global-step3750.ckpt"
52
+ # model.load_state_dict(load_state_dict(resume_path, location='cpu'),strict=True)
53
+ # model.half()
54
+ # self.model=model.cuda()
55
+ # # self.model=model.eval()
56
+ # for param in self.model.parameters():
57
+ # param.requires_grad = False
58
+
59
+ if colorize_nlabels is not None:
60
+ assert type(colorize_nlabels)==int
61
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
62
+ if monitor is not None:
63
+ self.monitor = monitor
64
+
65
+ self.use_ema = ema_decay is not None
66
+ if self.use_ema:
67
+ self.ema_decay = ema_decay
68
+ assert 0. < ema_decay < 1.
69
+ self.model_ema = LitEma(self, decay=ema_decay)
70
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
71
+
72
+ if ckpt_path is not None:
73
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
74
+
75
+ def init_from_ckpt(self, path, ignore_keys=list()):
76
+ sd = torch.load(path, map_location="cpu")["state_dict"]
77
+ keys = list(sd.keys())
78
+ for k in keys:
79
+ for ik in ignore_keys:
80
+ if k.startswith(ik):
81
+ print("Deleting key {} from state_dict.".format(k))
82
+ del sd[k]
83
+ self.load_state_dict(sd, strict=False)
84
+ print(f"Restored from {path}")
85
+
86
+ @contextmanager
87
+ def ema_scope(self, context=None):
88
+ if self.use_ema:
89
+ self.model_ema.store(self.parameters())
90
+ self.model_ema.copy_to(self)
91
+ if context is not None:
92
+ print(f"{context}: Switched to EMA weights")
93
+ try:
94
+ yield None
95
+ finally:
96
+ if self.use_ema:
97
+ self.model_ema.restore(self.parameters())
98
+ if context is not None:
99
+ print(f"{context}: Restored training weights")
100
+
101
+ def on_train_batch_end(self, *args, **kwargs):
102
+ if self.use_ema:
103
+ self.model_ema(self)
104
+
105
+ def encode(self, x):
106
+ h = self.encoder(x)
107
+ moments = self.quant_conv(h)
108
+ posterior = DiagonalGaussianDistribution(moments)
109
+ return posterior
110
+
111
+ def decode(self, z,gray_content_z):
112
+ z = self.post_quant_conv(z)
113
+ gray_content_z = self.post_quant_conv(gray_content_z)
114
+ dec = self.decoder(z,gray_content_z)
115
+ return dec
116
+
117
+ def forward(self, input,gray_image, sample_posterior=True):
118
+ posterior = self.encode(input)
119
+ if sample_posterior:
120
+ z = posterior.sample()
121
+ else:
122
+ z = posterior.mode()
123
+ gray_posterior = self.encode(gray_image)
124
+ if sample_posterior:
125
+ gray_content_z = gray_posterior.sample()
126
+ else:
127
+ gray_content_z = gray_posterior.mode()
128
+ dec = self.decode(z,gray_content_z)
129
+ return dec, posterior
130
+
131
+ def get_input(self, batch,k0, k1,k2):
132
+ # print(batch)
133
+ # print(k)
134
+ # x = batch[k]
135
+ # if len(x.shape) == 3:
136
+ # x = x[..., None]
137
+ # x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
138
+ gray_image = batch[k2]
139
+ if len(gray_image.shape) == 3:
140
+ gray_image = gray_image[..., None]
141
+ gray_image = gray_image.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
142
+
143
+
144
+ # t=random.randint(1,100)#120
145
+ # print(t)
146
+ # model=model.cuda()
147
+ x = batch[k0]#self.model.get_noised_images(((gt.squeeze(0)+1.0)/2.0).permute(2,0,1).to(memory_format=torch.contiguous_format).type(torch.HalfTensor).cuda(),t=torch.Tensor([t]).long().cuda())
148
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
149
+ # x = x.float()
150
+ # torch.cuda.empty_cache()
151
+ # print(input.shape)
152
+ # cv2.imwrite("tttt.png",cv2.cvtColor(x.squeeze(0).permute(1,2,0).cpu().numpy()*255.0, cv2.COLOR_RGB2BGR))
153
+ # x = x*2.0-1.0
154
+ # x = x.squeeze(0).permute(1,2,0).cpu().numpy()*2.0-1.0
155
+ # if len(x.shape) == 3:
156
+ # x = x[..., None]
157
+ # x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format)
158
+ gt = batch[k1]
159
+ if len(gt.shape) == 3:
160
+ gt = gt[..., None]
161
+ gt = gt.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
162
+
163
+ return gt,x,gray_image
164
+
165
+ def training_step(self, batch, batch_idx, optimizer_idx):
166
+ with torch.no_grad():
167
+ outputs,inputs,gray_images = self.get_input(batch, self.image_key,self.output_key,self.gray_image_key)
168
+ reconstructions, posterior = self(inputs,gray_images)
169
+
170
+ if optimizer_idx == 0:
171
+ # train encoder+decoder+logvar
172
+ aeloss, log_dict_ae = self.loss(outputs, reconstructions, posterior, optimizer_idx, self.global_step,
173
+ last_layer=self.get_last_layer(), split="train")
174
+ self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
175
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
176
+ # print(aeloss)
177
+ return aeloss
178
+
179
+ if optimizer_idx == 1:
180
+ # train the discriminator
181
+ discloss, log_dict_disc = self.loss(outputs, reconstructions, posterior, optimizer_idx, self.global_step,
182
+ last_layer=self.get_last_layer(), split="train")
183
+
184
+ self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
185
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
186
+ # print(discloss)
187
+ return discloss
188
+
189
+ def validation_step(self, batch, batch_idx):
190
+ log_dict = self._validation_step(batch, batch_idx)
191
+ with self.ema_scope():
192
+ log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema")
193
+ return log_dict
194
+
195
+ def _validation_step(self, batch, batch_idx, postfix=""):
196
+ outputs,inputs,gray_images = self.get_input(batch, self.image_key,self.output_key,self.gray_image_key)
197
+ reconstructions, posterior = self(inputs,gray_images)
198
+ aeloss, log_dict_ae = self.loss(outputs, reconstructions, posterior, 0, self.global_step,
199
+ last_layer=self.get_last_layer(), split="val"+postfix)
200
+
201
+ discloss, log_dict_disc = self.loss(outputs, reconstructions, posterior, 1, self.global_step,
202
+ last_layer=self.get_last_layer(), split="val"+postfix)
203
+
204
+ self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
205
+ self.log_dict(log_dict_ae)
206
+ self.log_dict(log_dict_disc)
207
+ return self.log_dict
208
+
209
+ def configure_optimizers(self):
210
+ lr = self.learning_rate
211
+ # ae_params_list = list(self.encoder.parameters()) + list(self.decoder.parameters()) + list(
212
+ # self.quant_conv.parameters()) + list(self.post_quant_conv.parameters())
213
+ # for name,param in self.decoder.named_parameters():
214
+ # if "dcn" in name:
215
+ # print(name)
216
+ ae_params_list = list(self.decoder.dcn_in.parameters())+list(self.decoder.mid.block_1.dcn1.parameters())+list(self.decoder.mid.block_1.dcn2.parameters())+list(self.decoder.mid.block_2.dcn1.parameters())+list(self.decoder.mid.block_2.dcn2.parameters())
217
+ # print(ae_params_list)
218
+ # for i in ae_params_list:
219
+ # print(i)
220
+ if self.learn_logvar:
221
+ print(f"{self.__class__.__name__}: Learning logvar")
222
+ ae_params_list.append(self.loss.logvar)
223
+ opt_ae = torch.optim.Adam(ae_params_list,
224
+ lr=lr, betas=(0.5, 0.9))
225
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
226
+ lr=lr, betas=(0.5, 0.9))
227
+ return [opt_ae, opt_disc], []
228
+
229
+ def get_last_layer(self):
230
+ return self.decoder.conv_out.weight
231
+
232
+ @torch.no_grad()
233
+ def get_gray_content_z(self,gray_image):
234
+ # if len(gray_image.shape) == 3:
235
+ # gray_image = gray_image[..., None]
236
+ gray_image = gray_image.unsqueeze(0).permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
237
+ gray_content_z=self.encode(gray_image)
238
+ gray_content_z = gray_content_z.sample()
239
+ return gray_content_z
240
+
241
+ @torch.no_grad()
242
+ def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs):
243
+ log = dict()
244
+ gt,x,gray_image = self.get_input(batch, self.image_key,self.output_key,self.gray_image_key)
245
+ log['gt']=gt
246
+ x = x.to(self.device)
247
+ gray_image = gray_image.to(self.device)
248
+ if not only_inputs:
249
+ xrec, posterior = self(x,gray_image)
250
+ if x.shape[1] > 3:
251
+ # colorize with random projection
252
+ assert xrec.shape[1] > 3
253
+ x = self.to_rgb(x)
254
+ gray_image = self.to_rgb(gray_image)
255
+ xrec = self.to_rgb(xrec)
256
+ gray_content_z=self.encode(gray_image)
257
+ gray_content_z = gray_content_z.sample()
258
+ log["samples"] = self.decode(torch.randn_like(posterior.sample()),gray_content_z)
259
+ log["reconstructions"] = xrec
260
+ if log_ema or self.use_ema:
261
+ with self.ema_scope():
262
+ xrec_ema, posterior_ema = self(x)
263
+ if x.shape[1] > 3:
264
+ # colorize with random projection
265
+ assert xrec_ema.shape[1] > 3
266
+ xrec_ema = self.to_rgb(xrec_ema)
267
+ log["samples_ema"] = self.decode(torch.randn_like(posterior_ema.sample()))
268
+ log["reconstructions_ema"] = xrec_ema
269
+ log["inputs"] = x
270
+ return log
271
+
272
+ def to_rgb(self, x):
273
+ assert self.image_key == "segmentation"
274
+ if not hasattr(self, "colorize"):
275
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
276
+ x = F.conv2d(x, weight=self.colorize)
277
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
278
+ return x
279
+
280
+
281
+ class IdentityFirstStage(torch.nn.Module):
282
+ def __init__(self, *args, vq_interface=False, **kwargs):
283
+ self.vq_interface = vq_interface
284
+ super().__init__()
285
+
286
+ def encode(self, x, *args, **kwargs):
287
+ return x
288
+
289
+ def decode(self, x, *args, **kwargs):
290
+ return x
291
+
292
+ def quantize(self, x, *args, **kwargs):
293
+ if self.vq_interface:
294
+ return x, None, [None, None, None]
295
+ return x
296
+
297
+ def forward(self, x, *args, **kwargs):
298
+ return x
299
+
Control-Color/ldm/models/diffusion/__init__.py ADDED
File without changes
Control-Color/ldm/models/diffusion/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (162 Bytes). View file
 
Control-Color/ldm/models/diffusion/__pycache__/ddim.cpython-38.pyc ADDED
Binary file (9.25 kB). View file
 
Control-Color/ldm/models/diffusion/__pycache__/ddpm.cpython-38.pyc ADDED
Binary file (55.8 kB). View file
 
Control-Color/ldm/models/diffusion/__pycache__/ddpm_nonoise.cpython-38.pyc ADDED
Binary file (54.9 kB). View file
 
Control-Color/ldm/models/diffusion/ddim.py ADDED
@@ -0,0 +1,337 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+
3
+ import torch
4
+ import numpy as np
5
+ from tqdm import tqdm
6
+
7
+ from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
8
+
9
+
10
+ class DDIMSampler(object):
11
+ def __init__(self, model, schedule="linear", **kwargs):
12
+ super().__init__()
13
+ self.model = model
14
+ self.ddpm_num_timesteps = model.num_timesteps
15
+ self.schedule = schedule
16
+
17
+ def register_buffer(self, name, attr):
18
+ if type(attr) == torch.Tensor:
19
+ if attr.device != torch.device("cuda"):
20
+ attr = attr.to(torch.device("cuda"))
21
+ setattr(self, name, attr)
22
+
23
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
24
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
25
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
26
+ alphas_cumprod = self.model.alphas_cumprod
27
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
28
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
29
+
30
+ self.register_buffer('betas', to_torch(self.model.betas))
31
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
32
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
33
+
34
+ # calculations for diffusion q(x_t | x_{t-1}) and others
35
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
36
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
37
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
38
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
39
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
40
+
41
+ # ddim sampling parameters
42
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
43
+ ddim_timesteps=self.ddim_timesteps,
44
+ eta=ddim_eta,verbose=verbose)
45
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
46
+ self.register_buffer('ddim_alphas', ddim_alphas)
47
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
48
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
49
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
50
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
51
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
52
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
53
+
54
+ @torch.no_grad()
55
+ def sample(self,
56
+ S,
57
+ batch_size,
58
+ shape,
59
+ conditioning=None,
60
+ callback=None,
61
+ normals_sequence=None,
62
+ img_callback=None,
63
+ quantize_x0=False,
64
+ eta=0.,
65
+ mask=None,
66
+ masked_image_latents=None,
67
+ x0=None,
68
+ temperature=1.,
69
+ noise_dropout=0.,
70
+ score_corrector=None,
71
+ corrector_kwargs=None,
72
+ verbose=True,
73
+ x_T=None,
74
+ log_every_t=100,
75
+ unconditional_guidance_scale=1.,
76
+ unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
77
+ dynamic_threshold=None,
78
+ ucg_schedule=None,
79
+ **kwargs
80
+ ):
81
+ if conditioning is not None:
82
+ if isinstance(conditioning, dict):
83
+ ctmp = conditioning[list(conditioning.keys())[0]]
84
+ while isinstance(ctmp, list): ctmp = ctmp[0]
85
+ cbs = ctmp.shape[0]
86
+ if cbs != batch_size:
87
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
88
+
89
+ elif isinstance(conditioning, list):
90
+ for ctmp in conditioning:
91
+ if ctmp.shape[0] != batch_size:
92
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
93
+
94
+ else:
95
+ if conditioning.shape[0] != batch_size:
96
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
97
+
98
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
99
+ # sampling
100
+ C, H, W = shape
101
+ size = (batch_size, C, H, W)
102
+ print(f'Data shape for DDIM sampling is {size}, eta {eta}')
103
+
104
+ samples, intermediates = self.ddim_sampling(conditioning, size,
105
+ callback=callback,
106
+ img_callback=img_callback,
107
+ quantize_denoised=quantize_x0,
108
+ mask=mask,masked_image_latents=masked_image_latents, x0=x0,
109
+ ddim_use_original_steps=False,
110
+ noise_dropout=noise_dropout,
111
+ temperature=temperature,
112
+ score_corrector=score_corrector,
113
+ corrector_kwargs=corrector_kwargs,
114
+ x_T=x_T,
115
+ log_every_t=log_every_t,
116
+ unconditional_guidance_scale=unconditional_guidance_scale,
117
+ unconditional_conditioning=unconditional_conditioning,
118
+ dynamic_threshold=dynamic_threshold,
119
+ ucg_schedule=ucg_schedule
120
+ )
121
+ return samples, intermediates
122
+
123
+ @torch.no_grad()
124
+ def ddim_sampling(self, cond, shape,
125
+ x_T=None, ddim_use_original_steps=False,
126
+ callback=None, timesteps=None, quantize_denoised=False,
127
+ mask=None,masked_image_latents=None, x0=None, img_callback=None, log_every_t=100,
128
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
129
+ unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
130
+ ucg_schedule=None):
131
+ device = self.model.betas.device
132
+ b = shape[0]
133
+ if x_T is None:
134
+ img = torch.randn(shape, device=device)
135
+ else:
136
+ img = x_T
137
+
138
+ if timesteps is None:
139
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
140
+ elif timesteps is not None and not ddim_use_original_steps:
141
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
142
+ timesteps = self.ddim_timesteps[:subset_end]
143
+
144
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
145
+ time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
146
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
147
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
148
+
149
+ iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
150
+
151
+ for i, step in enumerate(iterator):
152
+ index = total_steps - i - 1
153
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
154
+
155
+ # if mask is not None:
156
+ # assert x0 is not None
157
+ # img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
158
+ # img = img_orig * mask + (1. - mask) * img
159
+
160
+ if ucg_schedule is not None:
161
+ assert len(ucg_schedule) == len(time_range)
162
+ unconditional_guidance_scale = ucg_schedule[i]
163
+
164
+ outs = self.p_sample_ddim(img,mask,masked_image_latents, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
165
+ quantize_denoised=quantize_denoised, temperature=temperature,
166
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
167
+ corrector_kwargs=corrector_kwargs,
168
+ unconditional_guidance_scale=unconditional_guidance_scale,
169
+ unconditional_conditioning=unconditional_conditioning,
170
+ dynamic_threshold=dynamic_threshold)
171
+ img, pred_x0 = outs
172
+ if callback: callback(i)
173
+ if img_callback: img_callback(pred_x0, i)
174
+
175
+ if index % log_every_t == 0 or index == total_steps - 1:
176
+ intermediates['x_inter'].append(img)
177
+ intermediates['pred_x0'].append(pred_x0)
178
+
179
+ return img, intermediates
180
+
181
+ @torch.no_grad()
182
+ def p_sample_ddim(self, x,mask,masked_image_latents, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
183
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
184
+ unconditional_guidance_scale=1., unconditional_conditioning=None,
185
+ dynamic_threshold=None):
186
+ b, *_, device = *x.shape, x.device
187
+
188
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
189
+ model_output = self.model.apply_model(x,mask,masked_image_latents, t, c)
190
+ else:
191
+ x_in = torch.cat([x] * 2)
192
+ t_in = torch.cat([t] * 2)
193
+ if isinstance(c, dict):
194
+ assert isinstance(unconditional_conditioning, dict)
195
+ c_in = dict()
196
+ for k in c:
197
+ if isinstance(c[k], list):
198
+ c_in[k] = [torch.cat([
199
+ unconditional_conditioning[k][i],
200
+ c[k][i]]) for i in range(len(c[k]))]
201
+ else:
202
+ c_in[k] = torch.cat([
203
+ unconditional_conditioning[k],
204
+ c[k]])
205
+ elif isinstance(c, list):
206
+ c_in = list()
207
+ assert isinstance(unconditional_conditioning, list)
208
+ for i in range(len(c)):
209
+ c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
210
+ else:
211
+ c_in = torch.cat([unconditional_conditioning, c])
212
+ model_uncond, model_t = self.model.apply_model(x_in,mask,masked_image_latents, t_in, c_in).chunk(2)
213
+ model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
214
+
215
+ if self.model.parameterization == "v":
216
+ e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
217
+ else:
218
+ e_t = model_output
219
+
220
+ if score_corrector is not None:
221
+ assert self.model.parameterization == "eps", 'not implemented'
222
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
223
+
224
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
225
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
226
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
227
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
228
+ # select parameters corresponding to the currently considered timestep
229
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
230
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
231
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
232
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
233
+
234
+ # current prediction for x_0
235
+ if self.model.parameterization != "v":
236
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
237
+ else:
238
+ pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
239
+
240
+ if quantize_denoised:
241
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
242
+
243
+ if dynamic_threshold is not None:
244
+ raise NotImplementedError()
245
+
246
+ # direction pointing to x_t
247
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
248
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
249
+ if noise_dropout > 0.:
250
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
251
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
252
+ return x_prev, pred_x0
253
+
254
+ @torch.no_grad()
255
+ def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
256
+ unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
257
+ num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
258
+
259
+ assert t_enc <= num_reference_steps
260
+ num_steps = t_enc
261
+
262
+ if use_original_steps:
263
+ alphas_next = self.alphas_cumprod[:num_steps]
264
+ alphas = self.alphas_cumprod_prev[:num_steps]
265
+ else:
266
+ alphas_next = self.ddim_alphas[:num_steps]
267
+ alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
268
+
269
+ x_next = x0
270
+ intermediates = []
271
+ inter_steps = []
272
+ for i in tqdm(range(num_steps), desc='Encoding Image'):
273
+ t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
274
+ if unconditional_guidance_scale == 1.:
275
+ noise_pred = self.model.apply_model(x_next, t, c)
276
+ else:
277
+ assert unconditional_conditioning is not None
278
+ e_t_uncond, noise_pred = torch.chunk(
279
+ self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
280
+ torch.cat((unconditional_conditioning, c))), 2)
281
+ noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
282
+
283
+ xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
284
+ weighted_noise_pred = alphas_next[i].sqrt() * (
285
+ (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
286
+ x_next = xt_weighted + weighted_noise_pred
287
+ if return_intermediates and i % (
288
+ num_steps // return_intermediates) == 0 and i < num_steps - 1:
289
+ intermediates.append(x_next)
290
+ inter_steps.append(i)
291
+ elif return_intermediates and i >= num_steps - 2:
292
+ intermediates.append(x_next)
293
+ inter_steps.append(i)
294
+ if callback: callback(i)
295
+
296
+ out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
297
+ if return_intermediates:
298
+ out.update({'intermediates': intermediates})
299
+ return x_next, out
300
+
301
+ @torch.no_grad()
302
+ def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
303
+ # fast, but does not allow for exact reconstruction
304
+ # t serves as an index to gather the correct alphas
305
+ if use_original_steps:
306
+ sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
307
+ sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
308
+ else:
309
+ sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
310
+ sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
311
+
312
+ if noise is None:
313
+ noise = torch.randn_like(x0)
314
+ return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
315
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
316
+
317
+ @torch.no_grad()
318
+ def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
319
+ use_original_steps=False, callback=None):
320
+
321
+ timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
322
+ timesteps = timesteps[:t_start]
323
+
324
+ time_range = np.flip(timesteps)
325
+ total_steps = timesteps.shape[0]
326
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
327
+
328
+ iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
329
+ x_dec = x_latent
330
+ for i, step in enumerate(iterator):
331
+ index = total_steps - i - 1
332
+ ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
333
+ x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
334
+ unconditional_guidance_scale=unconditional_guidance_scale,
335
+ unconditional_conditioning=unconditional_conditioning)
336
+ if callback: callback(i)
337
+ return x_dec
Control-Color/ldm/models/diffusion/ddpm.py ADDED
@@ -0,0 +1,1911 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ wild mixture of
3
+ https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
4
+ https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
5
+ https://github.com/CompVis/taming-transformers
6
+ -- merci
7
+ """
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+ import numpy as np
12
+ import pytorch_lightning as pl
13
+ from torch.optim.lr_scheduler import LambdaLR
14
+ from einops import rearrange, repeat
15
+ from contextlib import contextmanager, nullcontext
16
+ from functools import partial
17
+ import itertools
18
+ from tqdm import tqdm
19
+ from torchvision.utils import make_grid
20
+ from pytorch_lightning.utilities.distributed import rank_zero_only
21
+ from omegaconf import ListConfig
22
+
23
+ from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
24
+ from ldm.modules.ema import LitEma
25
+ from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
26
+ from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
27
+ from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
28
+ from ldm.models.diffusion.ddim import DDIMSampler
29
+
30
+
31
+ __conditioning_keys__ = {'concat': 'c_concat',
32
+ 'crossattn': 'c_crossattn',
33
+ 'adm': 'y'}
34
+
35
+
36
+ def disabled_train(self, mode=True):
37
+ """Overwrite model.train with this function to make sure train/eval mode
38
+ does not change anymore."""
39
+ return self
40
+
41
+
42
+ def uniform_on_device(r1, r2, shape, device):
43
+ return (r1 - r2) * torch.rand(*shape, device=device) + r2
44
+
45
+ def prepare_mask_latents(
46
+ mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
47
+ ):
48
+ # resize the mask to latents shape as we concatenate the mask to the latents
49
+ # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
50
+ # and half precision
51
+ mask = torch.nn.functional.interpolate(
52
+ mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
53
+ )
54
+ mask = mask.to(device=device, dtype=dtype)
55
+
56
+ masked_image = masked_image.to(device=device, dtype=dtype)
57
+
58
+ # encode the mask image into latents space so we can concatenate it to the latents
59
+ if isinstance(generator, list):
60
+ masked_image_latents = [
61
+ self.vae.encode(masked_image[i : i + 1]).latent_dist.sample(generator=generator[i])
62
+ for i in range(batch_size)
63
+ ]
64
+ masked_image_latents = torch.cat(masked_image_latents, dim=0)
65
+ else:
66
+ masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator)
67
+ masked_image_latents = self.vae.config.scaling_factor * masked_image_latents
68
+
69
+ # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
70
+ if mask.shape[0] < batch_size:
71
+ if not batch_size % mask.shape[0] == 0:
72
+ raise ValueError(
73
+ "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
74
+ f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
75
+ " of masks that you pass is divisible by the total requested batch size."
76
+ )
77
+ mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
78
+ if masked_image_latents.shape[0] < batch_size:
79
+ if not batch_size % masked_image_latents.shape[0] == 0:
80
+ raise ValueError(
81
+ "The passed images and the required batch size don't match. Images are supposed to be duplicated"
82
+ f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
83
+ " Make sure the number of images that you pass is divisible by the total requested batch size."
84
+ )
85
+ masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
86
+
87
+ mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
88
+ masked_image_latents = (
89
+ torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
90
+ )
91
+
92
+ # aligning device to prevent device errors when concating it with the latent model input
93
+ masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
94
+ return mask, masked_image_latents
95
+
96
+ class DDPM(pl.LightningModule):
97
+ # classic DDPM with Gaussian diffusion, in image space
98
+ def __init__(self,
99
+ unet_config,
100
+ timesteps=1000,
101
+ beta_schedule="linear",
102
+ loss_type="l2",
103
+ ckpt_path=None,
104
+ ignore_keys=[],
105
+ load_only_unet=False,
106
+ monitor="val/loss",
107
+ use_ema=True,
108
+ first_stage_key="image",
109
+ image_size=256,
110
+ channels=3,
111
+ log_every_t=100,
112
+ clip_denoised=True,
113
+ linear_start=1e-4,
114
+ linear_end=2e-2,
115
+ cosine_s=8e-3,
116
+ given_betas=None,
117
+ original_elbo_weight=0.,
118
+ v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
119
+ l_simple_weight=1.,
120
+ conditioning_key=None,
121
+ parameterization="eps", # all assuming fixed variance schedules
122
+ scheduler_config=None,
123
+ use_positional_encodings=False,
124
+ learn_logvar=False,
125
+ logvar_init=0.,
126
+ make_it_fit=False,
127
+ ucg_training=None,
128
+ reset_ema=False,
129
+ reset_num_ema_updates=False,
130
+ ):
131
+ super().__init__()
132
+ assert parameterization in ["eps", "x0", "v"], 'currently only supporting "eps" and "x0" and "v"'
133
+ self.parameterization = parameterization
134
+ print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
135
+ self.cond_stage_model = None
136
+ self.clip_denoised = clip_denoised
137
+ self.log_every_t = log_every_t
138
+ self.first_stage_key = first_stage_key
139
+ self.image_size = image_size # try conv?
140
+ self.channels = channels
141
+ self.use_positional_encodings = use_positional_encodings
142
+ self.model = DiffusionWrapper(unet_config, conditioning_key)
143
+ count_params(self.model, verbose=True)
144
+ self.use_ema = use_ema
145
+ if self.use_ema:
146
+ self.model_ema = LitEma(self.model)
147
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
148
+
149
+ self.use_scheduler = scheduler_config is not None
150
+ if self.use_scheduler:
151
+ self.scheduler_config = scheduler_config
152
+
153
+ self.v_posterior = v_posterior
154
+ self.original_elbo_weight = original_elbo_weight
155
+ self.l_simple_weight = l_simple_weight
156
+
157
+ if monitor is not None:
158
+ self.monitor = monitor
159
+ self.make_it_fit = make_it_fit
160
+ if reset_ema: assert exists(ckpt_path)
161
+ if ckpt_path is not None:
162
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
163
+ if reset_ema:
164
+ assert self.use_ema
165
+ print(f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
166
+ self.model_ema = LitEma(self.model)
167
+ if reset_num_ema_updates:
168
+ print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
169
+ assert self.use_ema
170
+ self.model_ema.reset_num_updates()
171
+
172
+ self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
173
+ linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
174
+
175
+ self.loss_type = loss_type
176
+
177
+ self.learn_logvar = learn_logvar
178
+ logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
179
+ if self.learn_logvar:
180
+ self.logvar = nn.Parameter(self.logvar, requires_grad=True)
181
+ else:
182
+ self.register_buffer('logvar', logvar)
183
+
184
+ self.ucg_training = ucg_training or dict()
185
+ if self.ucg_training:
186
+ self.ucg_prng = np.random.RandomState()
187
+
188
+ def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
189
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
190
+ if exists(given_betas):
191
+ betas = given_betas
192
+ else:
193
+ betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
194
+ cosine_s=cosine_s)
195
+ alphas = 1. - betas
196
+ alphas_cumprod = np.cumprod(alphas, axis=0)
197
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
198
+
199
+ timesteps, = betas.shape
200
+ self.num_timesteps = int(timesteps)
201
+ self.linear_start = linear_start
202
+ self.linear_end = linear_end
203
+ assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
204
+
205
+ to_torch = partial(torch.tensor, dtype=torch.float32)
206
+
207
+ self.register_buffer('betas', to_torch(betas))
208
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
209
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
210
+
211
+ # calculations for diffusion q(x_t | x_{t-1}) and others
212
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
213
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
214
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
215
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
216
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
217
+
218
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
219
+ posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
220
+ 1. - alphas_cumprod) + self.v_posterior * betas
221
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
222
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
223
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
224
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
225
+ self.register_buffer('posterior_mean_coef1', to_torch(
226
+ betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
227
+ self.register_buffer('posterior_mean_coef2', to_torch(
228
+ (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
229
+
230
+ if self.parameterization == "eps":
231
+ lvlb_weights = self.betas ** 2 / (
232
+ 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
233
+ elif self.parameterization == "x0":
234
+ lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
235
+ elif self.parameterization == "v":
236
+ lvlb_weights = torch.ones_like(self.betas ** 2 / (
237
+ 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)))
238
+ else:
239
+ raise NotImplementedError("mu not supported")
240
+ lvlb_weights[0] = lvlb_weights[1]
241
+ self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
242
+ assert not torch.isnan(self.lvlb_weights).all()
243
+
244
+ @contextmanager
245
+ def ema_scope(self, context=None):
246
+ if self.use_ema:
247
+ self.model_ema.store(self.model.parameters())
248
+ self.model_ema.copy_to(self.model)
249
+ if context is not None:
250
+ print(f"{context}: Switched to EMA weights")
251
+ try:
252
+ yield None
253
+ finally:
254
+ if self.use_ema:
255
+ self.model_ema.restore(self.model.parameters())
256
+ if context is not None:
257
+ print(f"{context}: Restored training weights")
258
+
259
+ @torch.no_grad()
260
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
261
+ sd = torch.load(path, map_location="cpu")
262
+ if "state_dict" in list(sd.keys()):
263
+ sd = sd["state_dict"]
264
+ keys = list(sd.keys())
265
+ for k in keys:
266
+ for ik in ignore_keys:
267
+ if k.startswith(ik):
268
+ print("Deleting key {} from state_dict.".format(k))
269
+ del sd[k]
270
+ if self.make_it_fit:
271
+ n_params = len([name for name, _ in
272
+ itertools.chain(self.named_parameters(),
273
+ self.named_buffers())])
274
+ for name, param in tqdm(
275
+ itertools.chain(self.named_parameters(),
276
+ self.named_buffers()),
277
+ desc="Fitting old weights to new weights",
278
+ total=n_params
279
+ ):
280
+ if not name in sd:
281
+ continue
282
+ old_shape = sd[name].shape
283
+ new_shape = param.shape
284
+ assert len(old_shape) == len(new_shape)
285
+ if len(new_shape) > 2:
286
+ # we only modify first two axes
287
+ assert new_shape[2:] == old_shape[2:]
288
+ # assumes first axis corresponds to output dim
289
+ if not new_shape == old_shape:
290
+ new_param = param.clone()
291
+ old_param = sd[name]
292
+ if len(new_shape) == 1:
293
+ for i in range(new_param.shape[0]):
294
+ new_param[i] = old_param[i % old_shape[0]]
295
+ elif len(new_shape) >= 2:
296
+ for i in range(new_param.shape[0]):
297
+ for j in range(new_param.shape[1]):
298
+ new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]]
299
+
300
+ n_used_old = torch.ones(old_shape[1])
301
+ for j in range(new_param.shape[1]):
302
+ n_used_old[j % old_shape[1]] += 1
303
+ n_used_new = torch.zeros(new_shape[1])
304
+ for j in range(new_param.shape[1]):
305
+ n_used_new[j] = n_used_old[j % old_shape[1]]
306
+
307
+ n_used_new = n_used_new[None, :]
308
+ while len(n_used_new.shape) < len(new_shape):
309
+ n_used_new = n_used_new.unsqueeze(-1)
310
+ new_param /= n_used_new
311
+
312
+ sd[name] = new_param
313
+
314
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
315
+ sd, strict=False)
316
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
317
+ if len(missing) > 0:
318
+ print(f"Missing Keys:\n {missing}")
319
+ if len(unexpected) > 0:
320
+ print(f"\nUnexpected Keys:\n {unexpected}")
321
+
322
+ def q_mean_variance(self, x_start, t):
323
+ """
324
+ Get the distribution q(x_t | x_0).
325
+ :param x_start: the [N x C x ...] tensor of noiseless inputs.
326
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
327
+ :return: A tuple (mean, variance, log_variance), all of x_start's shape.
328
+ """
329
+ mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
330
+ variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
331
+ log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
332
+ return mean, variance, log_variance
333
+
334
+ def predict_start_from_noise(self, x_t, t, noise):
335
+ return (
336
+ extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
337
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
338
+ )
339
+
340
+ def predict_start_from_z_and_v(self, x_t, t, v):
341
+ # self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
342
+ # self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
343
+ return (
344
+ extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t -
345
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
346
+ )
347
+
348
+ # def get_x_t_from_start_and_t(self, start, t, v):
349
+ # return (
350
+ # (start+extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, start.shape) * v)/extract_into_tensor(self.sqrt_alphas_cumprod, t, start.shape)
351
+ # )
352
+
353
+ def predict_eps_from_z_and_v(self, x_t, t, v):
354
+ return (
355
+ extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v +
356
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t
357
+ )
358
+
359
+ def q_posterior(self, x_start, x_t, t):
360
+ posterior_mean = (
361
+ extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
362
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
363
+ )
364
+ posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
365
+ posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
366
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
367
+
368
+ def p_mean_variance(self, x, t, clip_denoised: bool):
369
+ model_out = self.model(x, t)
370
+ if self.parameterization == "eps":
371
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
372
+ elif self.parameterization == "x0":
373
+ x_recon = model_out
374
+ if clip_denoised:
375
+ x_recon.clamp_(-1., 1.)
376
+
377
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
378
+ return model_mean, posterior_variance, posterior_log_variance
379
+
380
+ @torch.no_grad()
381
+ def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
382
+ b, *_, device = *x.shape, x.device
383
+ model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
384
+ noise = noise_like(x.shape, device, repeat_noise)
385
+ # no noise when t == 0
386
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
387
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
388
+
389
+ @torch.no_grad()
390
+ def p_sample_loop(self, shape, return_intermediates=False):
391
+ device = self.betas.device
392
+ b = shape[0]
393
+ img = torch.randn(shape, device=device)
394
+ intermediates = [img]
395
+ for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
396
+ img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
397
+ clip_denoised=self.clip_denoised)
398
+ if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
399
+ intermediates.append(img)
400
+ if return_intermediates:
401
+ return img, intermediates
402
+ return img
403
+
404
+ @torch.no_grad()
405
+ def sample(self, batch_size=16, return_intermediates=False):
406
+ image_size = self.image_size
407
+ channels = self.channels
408
+ return self.p_sample_loop((batch_size, channels, image_size, image_size),
409
+ return_intermediates=return_intermediates)
410
+
411
+ def q_sample(self, x_start, t, noise=None):
412
+ noise = default(noise, lambda: torch.randn_like(x_start))
413
+ return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
414
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
415
+
416
+ def get_v(self, x, noise, t):
417
+ return (
418
+ extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise -
419
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
420
+ )
421
+
422
+ def get_loss(self, pred, target, mean=True):
423
+ if self.loss_type == 'l1':
424
+ loss = (target - pred).abs()
425
+ if mean:
426
+ loss = loss.mean()
427
+ elif self.loss_type == 'l2':
428
+ if mean:
429
+ loss = torch.nn.functional.mse_loss(target, pred)
430
+ else:
431
+ loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
432
+ else:
433
+ raise NotImplementedError("unknown loss type '{loss_type}'")
434
+
435
+ return loss
436
+
437
+ def p_losses(self, x_start, t, noise=None):
438
+ noise = default(noise, lambda: torch.randn_like(x_start))
439
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
440
+ model_out = self.model(x_noisy, t)
441
+
442
+ loss_dict = {}
443
+ if self.parameterization == "eps":
444
+ target = noise
445
+ elif self.parameterization == "x0":
446
+ target = x_start
447
+ elif self.parameterization == "v":
448
+ target = self.get_v(x_start, noise, t)
449
+ else:
450
+ raise NotImplementedError(f"Parameterization {self.parameterization} not yet supported")
451
+
452
+ loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
453
+
454
+ log_prefix = 'train' if self.training else 'val'
455
+
456
+ loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
457
+ loss_simple = loss.mean() * self.l_simple_weight
458
+
459
+ loss_vlb = (self.lvlb_weights[t] * loss).mean()
460
+ loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
461
+
462
+ loss = loss_simple + self.original_elbo_weight * loss_vlb
463
+
464
+ loss_dict.update({f'{log_prefix}/loss': loss})
465
+
466
+ return loss, loss_dict
467
+
468
+ def forward(self, x, *args, **kwargs):
469
+ # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
470
+ # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
471
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
472
+ return self.p_losses(x, t, *args, **kwargs)
473
+
474
+ def get_input(self, batch, k):
475
+ x = batch[k]
476
+ if len(x.shape) == 3:
477
+ x = x[..., None]
478
+ x = rearrange(x, 'b h w c -> b c h w')
479
+ x = x.to(memory_format=torch.contiguous_format).float()
480
+ return x
481
+
482
+ def shared_step(self, batch):
483
+ x = self.get_input(batch, self.first_stage_key)
484
+ loss, loss_dict = self(x)
485
+ return loss, loss_dict
486
+
487
+ def training_step(self, batch, batch_idx):
488
+ for k in self.ucg_training:
489
+ p = self.ucg_training[k]["p"]
490
+ val = self.ucg_training[k]["val"]
491
+ if val is None:
492
+ val = ""
493
+ for i in range(len(batch[k])):
494
+ if self.ucg_prng.choice(2, p=[1 - p, p]):
495
+ batch[k][i] = val
496
+
497
+ loss, loss_dict = self.shared_step(batch)
498
+
499
+ self.log_dict(loss_dict, prog_bar=True,
500
+ logger=True, on_step=True, on_epoch=True)
501
+
502
+ self.log("global_step", self.global_step,
503
+ prog_bar=True, logger=True, on_step=True, on_epoch=False)
504
+
505
+ if self.use_scheduler:
506
+ lr = self.optimizers().param_groups[0]['lr']
507
+ self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
508
+
509
+ return loss
510
+
511
+ @torch.no_grad()
512
+ def validation_step(self, batch, batch_idx):
513
+ _, loss_dict_no_ema = self.shared_step(batch)
514
+ with self.ema_scope():
515
+ _, loss_dict_ema = self.shared_step(batch)
516
+ loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
517
+ self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
518
+ self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
519
+
520
+ def on_train_batch_end(self, *args, **kwargs):
521
+ if self.use_ema:
522
+ self.model_ema(self.model)
523
+
524
+ def _get_rows_from_list(self, samples):
525
+ n_imgs_per_row = len(samples)
526
+ denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
527
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
528
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
529
+ return denoise_grid
530
+
531
+ @torch.no_grad()
532
+ def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
533
+ log = dict()
534
+ x = self.get_input(batch, self.first_stage_key)
535
+ N = min(x.shape[0], N)
536
+ n_row = min(x.shape[0], n_row)
537
+ x = x.to(self.device)[:N]
538
+ log["inputs"] = x
539
+
540
+ # get diffusion row
541
+ diffusion_row = list()
542
+ x_start = x[:n_row]
543
+
544
+ for t in range(self.num_timesteps):
545
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
546
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
547
+ t = t.to(self.device).long()
548
+ noise = torch.randn_like(x_start)
549
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
550
+ diffusion_row.append(x_noisy)
551
+
552
+ log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
553
+
554
+ if sample:
555
+ # get denoise row
556
+ with self.ema_scope("Plotting"):
557
+ samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
558
+
559
+ log["samples"] = samples
560
+ log["denoise_row"] = self._get_rows_from_list(denoise_row)
561
+
562
+ if return_keys:
563
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
564
+ return log
565
+ else:
566
+ return {key: log[key] for key in return_keys}
567
+ return log
568
+
569
+ def configure_optimizers(self):
570
+ lr = self.learning_rate
571
+ params = list(self.model.parameters())
572
+ if self.learn_logvar:
573
+ params = params + [self.logvar]
574
+ opt = torch.optim.AdamW(params, lr=lr)
575
+ return opt
576
+
577
+
578
+ class LatentDiffusion(DDPM):
579
+ """main class"""
580
+
581
+ def __init__(self,
582
+ first_stage_config,
583
+ cond_stage_config,
584
+ contextual_stage_config,
585
+ num_timesteps_cond=None,
586
+ cond_stage_key="image",
587
+ cond_stage_trainable=False,
588
+ concat_mode=True,
589
+ cond_stage_forward=None,
590
+ conditioning_key=None,
591
+ scale_factor=1.0,
592
+ scale_by_std=False,
593
+ force_null_conditioning=False,
594
+ masked_image=None,
595
+ mask=None,
596
+ load_loss=False,
597
+ *args, **kwargs):
598
+ self.masked_image=masked_image
599
+ self.mask=mask
600
+ self.load_loss=load_loss
601
+ self.force_null_conditioning = force_null_conditioning
602
+ self.num_timesteps_cond = default(num_timesteps_cond, 1)
603
+ self.scale_by_std = scale_by_std
604
+ assert self.num_timesteps_cond <= kwargs['timesteps']
605
+ # for backwards compatibility after implementation of DiffusionWrapper
606
+ if conditioning_key is None:
607
+ conditioning_key = 'concat' if concat_mode else 'crossattn'
608
+ if cond_stage_config == '__is_unconditional__' and not self.force_null_conditioning:
609
+ conditioning_key = None
610
+ ckpt_path = kwargs.pop("ckpt_path", None)
611
+ reset_ema = kwargs.pop("reset_ema", False)
612
+ reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False)
613
+ ignore_keys = kwargs.pop("ignore_keys", [])
614
+ # print(conditioning_key)
615
+ super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
616
+ self.concat_mode = concat_mode
617
+ self.cond_stage_trainable = cond_stage_trainable
618
+ self.cond_stage_key = cond_stage_key
619
+ try:
620
+ self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
621
+ except:
622
+ self.num_downs = 0
623
+ if not scale_by_std:
624
+ self.scale_factor = scale_factor
625
+ else:
626
+ self.register_buffer('scale_factor', torch.tensor(scale_factor))
627
+ self.instantiate_first_stage(first_stage_config)
628
+ self.instantiate_cond_stage(cond_stage_config)
629
+ self.instantiate_contextual_stage(contextual_stage_config)
630
+ self.cond_stage_forward = cond_stage_forward
631
+ self.clip_denoised = False
632
+ self.bbox_tokenizer = None
633
+
634
+ self.restarted_from_ckpt = False
635
+ if ckpt_path is not None:
636
+ self.init_from_ckpt(ckpt_path, ignore_keys)
637
+ self.restarted_from_ckpt = True
638
+ if reset_ema:
639
+ assert self.use_ema
640
+ print(
641
+ f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
642
+ self.model_ema = LitEma(self.model)
643
+ if reset_num_ema_updates:
644
+ print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
645
+ assert self.use_ema
646
+ self.model_ema.reset_num_updates()
647
+
648
+ def make_cond_schedule(self, ):
649
+ self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
650
+ ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
651
+ self.cond_ids[:self.num_timesteps_cond] = ids
652
+
653
+ @rank_zero_only
654
+ @torch.no_grad()
655
+ def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
656
+ # only for very first batch
657
+ if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
658
+ assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
659
+ # set rescale weight to 1./std of encodings
660
+ print("### USING STD-RESCALING ###")
661
+ x = super().get_input(batch, self.first_stage_key)
662
+ x = x.to(self.device)
663
+ encoder_posterior = self.encode_first_stage(x)
664
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
665
+ del self.scale_factor
666
+ self.register_buffer('scale_factor', 1. / z.flatten().std())
667
+ print(f"setting self.scale_factor to {self.scale_factor}")
668
+ print("### USING STD-RESCALING ###")
669
+
670
+ def register_schedule(self,
671
+ given_betas=None, beta_schedule="linear", timesteps=1000,
672
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
673
+ super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
674
+
675
+ self.shorten_cond_schedule = self.num_timesteps_cond > 1
676
+ if self.shorten_cond_schedule:
677
+ self.make_cond_schedule()
678
+
679
+ def instantiate_first_stage(self, config):
680
+ model = instantiate_from_config(config)
681
+ self.first_stage_model = model.eval()
682
+ self.first_stage_model.train = disabled_train
683
+ for param in self.first_stage_model.parameters():
684
+ param.requires_grad = False
685
+
686
+ def instantiate_contextual_stage(self, config):
687
+ if self.load_loss==True:
688
+ model = instantiate_from_config(config)
689
+ model.load_state_dict(torch.load("/mnt/lustre/zxliang/zcli/data/vgg19_conv.pth"), strict=False)
690
+ print("vgg loaded")
691
+ self.contextual_stage_model = model.eval()
692
+ for param in self.contextual_stage_model.parameters():
693
+ param.requires_grad = False
694
+ self.contextual_loss = ContextualLoss().to(self.device)
695
+ elif self.load_loss==False:
696
+ self.contextual_stage_model = None
697
+ self.contextual_loss = None
698
+ else:
699
+ print("ERROR!!!!!self.load_loss should be either True or False!!!")
700
+
701
+ def instantiate_cond_stage(self, config):
702
+ if not self.cond_stage_trainable:
703
+ if config == "__is_first_stage__":
704
+ print("Using first stage also as cond stage.")
705
+ self.cond_stage_model = self.first_stage_model
706
+ elif config == "__is_unconditional__":
707
+ print(f"Training {self.__class__.__name__} as an unconditional model.")
708
+ self.cond_stage_model = None
709
+ # self.be_unconditional = True
710
+ else:
711
+ model = instantiate_from_config(config)
712
+ self.cond_stage_model = model.eval()
713
+ self.cond_stage_model.train = disabled_train
714
+ for param in self.cond_stage_model.parameters():
715
+ param.requires_grad = False
716
+ else:
717
+ assert config != '__is_first_stage__'
718
+ assert config != '__is_unconditional__'
719
+ model = instantiate_from_config(config)
720
+ self.cond_stage_model = model
721
+
722
+ def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
723
+ denoise_row = []
724
+ for zd in tqdm(samples, desc=desc):
725
+ denoise_row.append(self.decode_first_stage(zd.to(self.device),
726
+ force_not_quantize=force_no_decoder_quantization))
727
+ n_imgs_per_row = len(denoise_row)
728
+ denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
729
+ denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
730
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
731
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
732
+ return denoise_grid
733
+
734
+ def get_first_stage_encoding(self, encoder_posterior):
735
+ if isinstance(encoder_posterior, DiagonalGaussianDistribution):
736
+ z = encoder_posterior.sample()
737
+ elif isinstance(encoder_posterior, torch.Tensor):
738
+ z = encoder_posterior
739
+ else:
740
+ raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
741
+ return self.scale_factor * z
742
+
743
+ def get_learned_conditioning(self, c):
744
+ if self.cond_stage_forward is None:
745
+ if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
746
+ c = self.cond_stage_model.encode(c)
747
+ if isinstance(c, DiagonalGaussianDistribution):
748
+ c = c.mode()
749
+ else:
750
+ c = self.cond_stage_model(c)
751
+ else:
752
+ assert hasattr(self.cond_stage_model, self.cond_stage_forward)
753
+ c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
754
+ return c
755
+
756
+ def meshgrid(self, h, w):
757
+ y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
758
+ x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
759
+
760
+ arr = torch.cat([y, x], dim=-1)
761
+ return arr
762
+
763
+ def delta_border(self, h, w):
764
+ """
765
+ :param h: height
766
+ :param w: width
767
+ :return: normalized distance to image border,
768
+ wtith min distance = 0 at border and max dist = 0.5 at image center
769
+ """
770
+ lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
771
+ arr = self.meshgrid(h, w) / lower_right_corner
772
+ dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
773
+ dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
774
+ edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
775
+ return edge_dist
776
+
777
+ def get_weighting(self, h, w, Ly, Lx, device):
778
+ weighting = self.delta_border(h, w)
779
+ weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
780
+ self.split_input_params["clip_max_weight"], )
781
+ weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
782
+
783
+ if self.split_input_params["tie_braker"]:
784
+ L_weighting = self.delta_border(Ly, Lx)
785
+ L_weighting = torch.clip(L_weighting,
786
+ self.split_input_params["clip_min_tie_weight"],
787
+ self.split_input_params["clip_max_tie_weight"])
788
+
789
+ L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
790
+ weighting = weighting * L_weighting
791
+ return weighting
792
+
793
+ def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
794
+ """
795
+ :param x: img of size (bs, c, h, w)
796
+ :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
797
+ """
798
+ bs, nc, h, w = x.shape
799
+
800
+ # number of crops in image
801
+ Ly = (h - kernel_size[0]) // stride[0] + 1
802
+ Lx = (w - kernel_size[1]) // stride[1] + 1
803
+
804
+ if uf == 1 and df == 1:
805
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
806
+ unfold = torch.nn.Unfold(**fold_params)
807
+
808
+ fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
809
+
810
+ weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
811
+ normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
812
+ weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
813
+
814
+ elif uf > 1 and df == 1:
815
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
816
+ unfold = torch.nn.Unfold(**fold_params)
817
+
818
+ fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
819
+ dilation=1, padding=0,
820
+ stride=(stride[0] * uf, stride[1] * uf))
821
+ fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
822
+
823
+ weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
824
+ normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
825
+ weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
826
+
827
+ elif df > 1 and uf == 1:
828
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
829
+ unfold = torch.nn.Unfold(**fold_params)
830
+
831
+ fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
832
+ dilation=1, padding=0,
833
+ stride=(stride[0] // df, stride[1] // df))
834
+ fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
835
+
836
+ weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
837
+ normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
838
+ weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
839
+
840
+ else:
841
+ raise NotImplementedError
842
+
843
+ return fold, unfold, normalization, weighting
844
+
845
+ @torch.no_grad()
846
+ def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
847
+ cond_key=None, return_original_cond=False, bs=None, return_x=False):
848
+ # print("batch",batch)
849
+ # print("k",k)
850
+ x = super().get_input(batch, k)
851
+ masked_image=batch[self.masked_image]
852
+ mask=batch[self.mask]
853
+ # print(mask.shape,masked_image.shape)
854
+ mask = torch.nn.functional.interpolate(mask, size=(mask.shape[2] // 8, mask.shape[3] // 8))
855
+ # mask=torch.cat([mask] * 2) #if do_classifier_free_guidance else mask
856
+ mask = mask.to(device="cuda",dtype=x.dtype)
857
+ do_classifier_free_guidance=False
858
+ # mask, masked_image_latents = self.prepare_mask_latents(
859
+ # mask,
860
+ # masked_image,
861
+ # batch_size * num_images_per_prompt,
862
+ # mask.shape[0],
863
+ # mask.shape[1],
864
+ # mask.dtype,
865
+ # "cuda",
866
+ # torch.manual_seed(859311133),#generator
867
+ # do_classifier_free_guidance,
868
+ # )
869
+ # print("x",x)
870
+ if bs is not None:
871
+ x = x[:bs]
872
+ x = x.to(self.device)
873
+
874
+ encoder_posterior = self.encode_first_stage(x)
875
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
876
+
877
+ masked_image_latents = self.get_first_stage_encoding(self.encode_first_stage(masked_image)).detach()
878
+
879
+ if self.model.conditioning_key is not None and not self.force_null_conditioning:
880
+ if cond_key is None:
881
+ cond_key = self.cond_stage_key
882
+ if cond_key != self.first_stage_key:
883
+ if cond_key in ['caption', 'coordinates_bbox', "txt"]:
884
+ xc = batch[cond_key]
885
+ elif cond_key in ['class_label', 'cls']:
886
+ xc = batch
887
+ else:
888
+ xc = super().get_input(batch, cond_key).to(self.device)
889
+ else:
890
+ xc = x
891
+ if not self.cond_stage_trainable or force_c_encode:
892
+ if isinstance(xc, dict) or isinstance(xc, list):
893
+ c = self.get_learned_conditioning(xc)
894
+ else:
895
+ c = self.get_learned_conditioning(xc.to(self.device))
896
+ else:
897
+ c = xc
898
+ if bs is not None:
899
+ c = c[:bs]
900
+
901
+ if self.use_positional_encodings:
902
+ pos_x, pos_y = self.compute_latent_shifts(batch)
903
+ ckey = __conditioning_keys__[self.model.conditioning_key]
904
+ c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
905
+
906
+ else:
907
+ c = None
908
+ xc = None
909
+ if self.use_positional_encodings:
910
+ pos_x, pos_y = self.compute_latent_shifts(batch)
911
+ c = {'pos_x': pos_x, 'pos_y': pos_y}
912
+ out = [z,mask,masked_image_latents, c]
913
+ if return_first_stage_outputs:
914
+ xrec = self.decode_first_stage(z)
915
+ out.extend([x, xrec])
916
+ if return_x:
917
+ out.extend([x])
918
+ if return_original_cond:
919
+ out.append(xc)
920
+ return out
921
+
922
+ @torch.no_grad()
923
+ def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
924
+ if predict_cids:
925
+ if z.dim() == 4:
926
+ z = torch.argmax(z.exp(), dim=1).long()
927
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
928
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
929
+
930
+ z = 1. / self.scale_factor * z
931
+ return self.first_stage_model.decode(z)
932
+
933
+ @torch.no_grad()
934
+ def encode_first_stage(self, x):
935
+ return self.first_stage_model.encode(x)
936
+
937
+ @torch.no_grad()
938
+ def decode_first_stage_before_vae(self, z, predict_cids=False, force_not_quantize=False):
939
+ if predict_cids:
940
+ if z.dim() == 4:
941
+ z = torch.argmax(z.exp(), dim=1).long()
942
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
943
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
944
+
945
+ z = 1. / self.scale_factor * z
946
+ return z
947
+
948
+ def shared_step(self, batch, **kwargs):
949
+ x,mask,masked_image_latents, c = self.get_input(batch, self.first_stage_key)
950
+ loss = self(x,mask,masked_image_latents, c)
951
+ return loss
952
+
953
+ def forward(self, x,mask,masked_image_latents, c, *args, **kwargs):
954
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
955
+ if self.model.conditioning_key is not None:
956
+ assert c is not None
957
+ if self.cond_stage_trainable:
958
+ c = self.get_learned_conditioning(c)
959
+ if self.shorten_cond_schedule: # TODO: drop this option
960
+ tc = self.cond_ids[t].to(self.device)
961
+ c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
962
+ return self.p_losses(x,mask,masked_image_latents, c, t, *args, **kwargs)
963
+
964
+ def apply_model(self, x_noisy, t, cond, return_ids=False):
965
+ if isinstance(cond, dict):
966
+ # hybrid case, cond is expected to be a dict
967
+ pass
968
+ else:
969
+ if not isinstance(cond, list):
970
+ cond = [cond]
971
+ key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
972
+ cond = {key: cond}
973
+
974
+ x_recon = self.model(x_noisy, t, **cond)
975
+
976
+ if isinstance(x_recon, tuple) and not return_ids:
977
+ return x_recon[0]
978
+ else:
979
+ return x_recon
980
+
981
+ def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
982
+ return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
983
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
984
+
985
+ def _prior_bpd(self, x_start):
986
+ """
987
+ Get the prior KL term for the variational lower-bound, measured in
988
+ bits-per-dim.
989
+ This term can't be optimized, as it only depends on the encoder.
990
+ :param x_start: the [N x C x ...] tensor of inputs.
991
+ :return: a batch of [N] KL values (in bits), one per batch element.
992
+ """
993
+ batch_size = x_start.shape[0]
994
+ t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
995
+ qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
996
+ kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
997
+ return mean_flat(kl_prior) / np.log(2.0)
998
+
999
+ def p_losses(self, x_start,mask,masked_image_latents, cond, t, noise=None): #latent diffusion
1000
+ noise = default(noise, lambda: torch.randn_like(x_start))
1001
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
1002
+ model_output = self.apply_model(x_noisy,mask,masked_image_latents, t, cond)
1003
+ # print("before loss: ", model_output.shape)
1004
+ loss_dict = {}
1005
+ prefix = 'train' if self.training else 'val'
1006
+
1007
+ if self.parameterization == "x0":
1008
+ target = x_start
1009
+ elif self.parameterization == "eps":
1010
+ target = noise
1011
+ elif self.parameterization == "v":
1012
+ target = self.get_v(x_start, noise, t)
1013
+ else:
1014
+ raise NotImplementedError()
1015
+
1016
+ loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
1017
+ loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
1018
+
1019
+ logvar_t = self.logvar[t].to(self.device)
1020
+ loss = loss_simple / torch.exp(logvar_t) + logvar_t
1021
+ # loss = loss_simple / torch.exp(self.logvar) + self.logvar
1022
+ if self.learn_logvar:
1023
+ loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
1024
+ loss_dict.update({'logvar': self.logvar.data.mean()})
1025
+
1026
+ loss = self.l_simple_weight * loss.mean()
1027
+
1028
+ loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
1029
+ loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
1030
+ loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
1031
+ loss += (self.original_elbo_weight * loss_vlb)
1032
+ loss_dict.update({f'{prefix}/loss': loss})
1033
+
1034
+ return loss, loss_dict
1035
+
1036
+ def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
1037
+ return_x0=False, score_corrector=None, corrector_kwargs=None):
1038
+ t_in = t
1039
+ model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
1040
+
1041
+ if score_corrector is not None:
1042
+ assert self.parameterization == "eps"
1043
+ model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
1044
+
1045
+ if return_codebook_ids:
1046
+ model_out, logits = model_out
1047
+
1048
+ if self.parameterization == "eps":
1049
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
1050
+ elif self.parameterization == "x0":
1051
+ x_recon = model_out
1052
+ else:
1053
+ raise NotImplementedError()
1054
+
1055
+ if clip_denoised:
1056
+ x_recon.clamp_(-1., 1.)
1057
+ if quantize_denoised:
1058
+ x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
1059
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
1060
+ if return_codebook_ids:
1061
+ return model_mean, posterior_variance, posterior_log_variance, logits
1062
+ elif return_x0:
1063
+ return model_mean, posterior_variance, posterior_log_variance, x_recon
1064
+ else:
1065
+ return model_mean, posterior_variance, posterior_log_variance
1066
+
1067
+ @torch.no_grad()
1068
+ def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
1069
+ return_codebook_ids=False, quantize_denoised=False, return_x0=False,
1070
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
1071
+ b, *_, device = *x.shape, x.device
1072
+ outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
1073
+ return_codebook_ids=return_codebook_ids,
1074
+ quantize_denoised=quantize_denoised,
1075
+ return_x0=return_x0,
1076
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
1077
+ if return_codebook_ids:
1078
+ raise DeprecationWarning("Support dropped.")
1079
+ model_mean, _, model_log_variance, logits = outputs
1080
+ elif return_x0:
1081
+ model_mean, _, model_log_variance, x0 = outputs
1082
+ else:
1083
+ model_mean, _, model_log_variance = outputs
1084
+
1085
+ noise = noise_like(x.shape, device, repeat_noise) * temperature
1086
+ if noise_dropout > 0.:
1087
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
1088
+ # no noise when t == 0
1089
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
1090
+
1091
+ if return_codebook_ids:
1092
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
1093
+ if return_x0:
1094
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
1095
+ else:
1096
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
1097
+
1098
+ @torch.no_grad()
1099
+ def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
1100
+ img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
1101
+ score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
1102
+ log_every_t=None):
1103
+ if not log_every_t:
1104
+ log_every_t = self.log_every_t
1105
+ timesteps = self.num_timesteps
1106
+ if batch_size is not None:
1107
+ b = batch_size if batch_size is not None else shape[0]
1108
+ shape = [batch_size] + list(shape)
1109
+ else:
1110
+ b = batch_size = shape[0]
1111
+ if x_T is None:
1112
+ img = torch.randn(shape, device=self.device)
1113
+ else:
1114
+ img = x_T
1115
+ intermediates = []
1116
+ if cond is not None:
1117
+ if isinstance(cond, dict):
1118
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1119
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
1120
+ else:
1121
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1122
+
1123
+ if start_T is not None:
1124
+ timesteps = min(timesteps, start_T)
1125
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
1126
+ total=timesteps) if verbose else reversed(
1127
+ range(0, timesteps))
1128
+ if type(temperature) == float:
1129
+ temperature = [temperature] * timesteps
1130
+
1131
+ for i in iterator:
1132
+ ts = torch.full((b,), i, device=self.device, dtype=torch.long)
1133
+ if self.shorten_cond_schedule:
1134
+ assert self.model.conditioning_key != 'hybrid'
1135
+ tc = self.cond_ids[ts].to(cond.device)
1136
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1137
+
1138
+ img, x0_partial = self.p_sample(img, cond, ts,
1139
+ clip_denoised=self.clip_denoised,
1140
+ quantize_denoised=quantize_denoised, return_x0=True,
1141
+ temperature=temperature[i], noise_dropout=noise_dropout,
1142
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
1143
+ if mask is not None:
1144
+ assert x0 is not None
1145
+ img_orig = self.q_sample(x0, ts)
1146
+ img = img_orig * mask + (1. - mask) * img
1147
+
1148
+ if i % log_every_t == 0 or i == timesteps - 1:
1149
+ intermediates.append(x0_partial)
1150
+ if callback: callback(i)
1151
+ if img_callback: img_callback(img, i)
1152
+ return img, intermediates
1153
+
1154
+ @torch.no_grad()
1155
+ def p_sample_loop(self, cond, shape, return_intermediates=False,
1156
+ x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
1157
+ mask=None, x0=None, img_callback=None, start_T=None,
1158
+ log_every_t=None):
1159
+
1160
+ if not log_every_t:
1161
+ log_every_t = self.log_every_t
1162
+ device = self.betas.device
1163
+ b = shape[0]
1164
+ if x_T is None:
1165
+ img = torch.randn(shape, device=device)
1166
+ else:
1167
+ img = x_T
1168
+
1169
+ intermediates = [img]
1170
+ if timesteps is None:
1171
+ timesteps = self.num_timesteps
1172
+
1173
+ if start_T is not None:
1174
+ timesteps = min(timesteps, start_T)
1175
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
1176
+ range(0, timesteps))
1177
+
1178
+ if mask is not None:
1179
+ assert x0 is not None
1180
+ assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
1181
+
1182
+ for i in iterator:
1183
+ ts = torch.full((b,), i, device=device, dtype=torch.long)
1184
+ if self.shorten_cond_schedule:
1185
+ assert self.model.conditioning_key != 'hybrid'
1186
+ tc = self.cond_ids[ts].to(cond.device)
1187
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1188
+
1189
+ img = self.p_sample(img, cond, ts,
1190
+ clip_denoised=self.clip_denoised,
1191
+ quantize_denoised=quantize_denoised)
1192
+ if mask is not None:
1193
+ img_orig = self.q_sample(x0, ts)
1194
+ img = img_orig * mask + (1. - mask) * img
1195
+
1196
+ if i % log_every_t == 0 or i == timesteps - 1:
1197
+ intermediates.append(img)
1198
+ if callback: callback(i)
1199
+ if img_callback: img_callback(img, i)
1200
+
1201
+ if return_intermediates:
1202
+ return img, intermediates
1203
+ return img
1204
+
1205
+ @torch.no_grad()
1206
+ def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
1207
+ verbose=True, timesteps=None, quantize_denoised=False,
1208
+ mask=None, x0=None, shape=None, **kwargs):
1209
+ if shape is None:
1210
+ shape = (batch_size, self.channels, self.image_size, self.image_size)
1211
+ if cond is not None:
1212
+ if isinstance(cond, dict):
1213
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1214
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
1215
+ else:
1216
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1217
+ return self.p_sample_loop(cond,
1218
+ shape,
1219
+ return_intermediates=return_intermediates, x_T=x_T,
1220
+ verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
1221
+ mask=mask, x0=x0)
1222
+
1223
+ @torch.no_grad()
1224
+ def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
1225
+ if ddim:
1226
+ ddim_sampler = DDIMSampler(self)
1227
+ shape = (self.channels, self.image_size, self.image_size)
1228
+ samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size,
1229
+ shape, cond, verbose=False, **kwargs)
1230
+
1231
+ else:
1232
+ samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
1233
+ return_intermediates=True, **kwargs)
1234
+
1235
+ return samples, intermediates
1236
+
1237
+ @torch.no_grad()
1238
+ def get_unconditional_conditioning(self, batch_size, null_label=None):
1239
+ if null_label is not None:
1240
+ xc = null_label
1241
+ if isinstance(xc, ListConfig):
1242
+ xc = list(xc)
1243
+ if isinstance(xc, dict) or isinstance(xc, list):
1244
+ c = self.get_learned_conditioning(xc)
1245
+ else:
1246
+ if hasattr(xc, "to"):
1247
+ xc = xc.to(self.device)
1248
+ c = self.get_learned_conditioning(xc)
1249
+ else:
1250
+ if self.cond_stage_key in ["class_label", "cls"]:
1251
+ xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device)
1252
+ return self.get_learned_conditioning(xc)
1253
+ else:
1254
+ raise NotImplementedError("todo")
1255
+ if isinstance(c, list): # in case the encoder gives us a list
1256
+ for i in range(len(c)):
1257
+ c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device)
1258
+ else:
1259
+ c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
1260
+ return c
1261
+
1262
+ @torch.no_grad()
1263
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=50, ddim_eta=0., return_keys=None,
1264
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
1265
+ plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
1266
+ use_ema_scope=True,
1267
+ **kwargs):
1268
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
1269
+ use_ddim = ddim_steps is not None
1270
+
1271
+ log = dict()
1272
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
1273
+ return_first_stage_outputs=True,
1274
+ force_c_encode=True,
1275
+ return_original_cond=True,
1276
+ bs=N)
1277
+ N = min(x.shape[0], N)
1278
+ n_row = min(x.shape[0], n_row)
1279
+ log["inputs"] = x
1280
+ log["reconstruction"] = xrec
1281
+ if self.model.conditioning_key is not None:
1282
+ if hasattr(self.cond_stage_model, "decode"):
1283
+ xc = self.cond_stage_model.decode(c)
1284
+ log["conditioning"] = xc
1285
+ elif self.cond_stage_key in ["caption", "txt"]:
1286
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
1287
+ log["conditioning"] = xc
1288
+ elif self.cond_stage_key in ['class_label', "cls"]:
1289
+ try:
1290
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
1291
+ log['conditioning'] = xc
1292
+ except KeyError:
1293
+ # probably no "human_label" in batch
1294
+ pass
1295
+ elif isimage(xc):
1296
+ log["conditioning"] = xc
1297
+ if ismap(xc):
1298
+ log["original_conditioning"] = self.to_rgb(xc)
1299
+
1300
+ if plot_diffusion_rows:
1301
+ # get diffusion row
1302
+ diffusion_row = list()
1303
+ z_start = z[:n_row]
1304
+ for t in range(self.num_timesteps):
1305
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1306
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1307
+ t = t.to(self.device).long()
1308
+ noise = torch.randn_like(z_start)
1309
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1310
+ diffusion_row.append(self.decode_first_stage(z_noisy))
1311
+
1312
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1313
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1314
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1315
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1316
+ log["diffusion_row"] = diffusion_grid
1317
+
1318
+ if sample:
1319
+ # get denoise row
1320
+ with ema_scope("Sampling"):
1321
+ samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1322
+ ddim_steps=ddim_steps, eta=ddim_eta)
1323
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1324
+ x_samples = self.decode_first_stage(samples)
1325
+ log["samples"] = x_samples
1326
+ if plot_denoise_rows:
1327
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1328
+ log["denoise_row"] = denoise_grid
1329
+
1330
+ if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
1331
+ self.first_stage_model, IdentityFirstStage):
1332
+ # also display when quantizing x0 while sampling
1333
+ with ema_scope("Plotting Quantized Denoised"):
1334
+ samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1335
+ ddim_steps=ddim_steps, eta=ddim_eta,
1336
+ quantize_denoised=True)
1337
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
1338
+ # quantize_denoised=True)
1339
+ x_samples = self.decode_first_stage(samples.to(self.device))
1340
+ log["samples_x0_quantized"] = x_samples
1341
+
1342
+ if unconditional_guidance_scale > 1.0:
1343
+ uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1344
+ if self.model.conditioning_key == "crossattn-adm":
1345
+ uc = {"c_crossattn": [uc], "c_adm": c["c_adm"]}
1346
+ with ema_scope("Sampling with classifier-free guidance"):
1347
+ samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1348
+ ddim_steps=ddim_steps, eta=ddim_eta,
1349
+ unconditional_guidance_scale=unconditional_guidance_scale,
1350
+ unconditional_conditioning=uc,
1351
+ )
1352
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
1353
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1354
+
1355
+ if inpaint:
1356
+ # make a simple center square
1357
+ b, h, w = z.shape[0], z.shape[2], z.shape[3]
1358
+ mask = torch.ones(N, h, w).to(self.device)
1359
+ # zeros will be filled in
1360
+ mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
1361
+ mask = mask[:, None, ...]
1362
+ with ema_scope("Plotting Inpaint"):
1363
+ samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
1364
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1365
+ x_samples = self.decode_first_stage(samples.to(self.device))
1366
+ log["samples_inpainting"] = x_samples
1367
+ log["mask"] = mask
1368
+
1369
+ # outpaint
1370
+ mask = 1. - mask
1371
+ with ema_scope("Plotting Outpaint"):
1372
+ samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
1373
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1374
+ x_samples = self.decode_first_stage(samples.to(self.device))
1375
+ log["samples_outpainting"] = x_samples
1376
+
1377
+ if plot_progressive_rows:
1378
+ with ema_scope("Plotting Progressives"):
1379
+ img, progressives = self.progressive_denoising(c,
1380
+ shape=(self.channels, self.image_size, self.image_size),
1381
+ batch_size=N)
1382
+ prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
1383
+ log["progressive_row"] = prog_row
1384
+
1385
+ if return_keys:
1386
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
1387
+ return log
1388
+ else:
1389
+ return {key: log[key] for key in return_keys}
1390
+ return log
1391
+
1392
+ def configure_optimizers(self):
1393
+ lr = self.learning_rate
1394
+ params = list(self.model.parameters())
1395
+ if self.cond_stage_trainable:
1396
+ print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
1397
+ params = params + list(self.cond_stage_model.parameters())
1398
+ if self.learn_logvar:
1399
+ print('Diffusion model optimizing logvar')
1400
+ params.append(self.logvar)
1401
+ opt = torch.optim.AdamW(params, lr=lr)
1402
+ if self.use_scheduler:
1403
+ assert 'target' in self.scheduler_config
1404
+ scheduler = instantiate_from_config(self.scheduler_config)
1405
+
1406
+ print("Setting up LambdaLR scheduler...")
1407
+ scheduler = [
1408
+ {
1409
+ 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
1410
+ 'interval': 'step',
1411
+ 'frequency': 1
1412
+ }]
1413
+ return [opt], scheduler
1414
+ return opt
1415
+
1416
+ @torch.no_grad()
1417
+ def to_rgb(self, x):
1418
+ x = x.float()
1419
+ if not hasattr(self, "colorize"):
1420
+ self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
1421
+ x = nn.functional.conv2d(x, weight=self.colorize)
1422
+ x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
1423
+ return x
1424
+
1425
+
1426
+ class DiffusionWrapper(pl.LightningModule):
1427
+ def __init__(self, diff_model_config, conditioning_key):
1428
+ super().__init__()
1429
+ self.sequential_cross_attn = diff_model_config.pop("sequential_crossattn", False)
1430
+ self.diffusion_model = instantiate_from_config(diff_model_config)
1431
+ self.conditioning_key = conditioning_key
1432
+ assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm', 'crossattn-adm']
1433
+
1434
+ def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None):
1435
+ if self.conditioning_key is None:
1436
+ out = self.diffusion_model(x, t)
1437
+ elif self.conditioning_key == 'concat':
1438
+ xc = torch.cat([x] + c_concat, dim=1)
1439
+ out = self.diffusion_model(xc, t)
1440
+ elif self.conditioning_key == 'crossattn':
1441
+ if not self.sequential_cross_attn:
1442
+ cc = torch.cat(c_crossattn, 1)
1443
+ else:
1444
+ cc = c_crossattn
1445
+ out = self.diffusion_model(x, t, context=cc)
1446
+ elif self.conditioning_key == 'hybrid':
1447
+ xc = torch.cat([x] + c_concat, dim=1)
1448
+ cc = torch.cat(c_crossattn, 1)
1449
+ out = self.diffusion_model(xc, t, context=cc)
1450
+ elif self.conditioning_key == 'hybrid-adm':
1451
+ assert c_adm is not None
1452
+ xc = torch.cat([x] + c_concat, dim=1)
1453
+ cc = torch.cat(c_crossattn, 1)
1454
+ out = self.diffusion_model(xc, t, context=cc, y=c_adm)
1455
+ elif self.conditioning_key == 'crossattn-adm':
1456
+ assert c_adm is not None
1457
+ cc = torch.cat(c_crossattn, 1)
1458
+ out = self.diffusion_model(x, t, context=cc, y=c_adm)
1459
+ elif self.conditioning_key == 'adm':
1460
+ cc = c_crossattn[0]
1461
+ out = self.diffusion_model(x, t, y=cc)
1462
+ else:
1463
+ raise NotImplementedError()
1464
+
1465
+ return out
1466
+
1467
+
1468
+ class LatentUpscaleDiffusion(LatentDiffusion):
1469
+ def __init__(self, *args, low_scale_config, low_scale_key="LR", noise_level_key=None, **kwargs):
1470
+ super().__init__(*args, **kwargs)
1471
+ # assumes that neither the cond_stage nor the low_scale_model contain trainable params
1472
+ assert not self.cond_stage_trainable
1473
+ self.instantiate_low_stage(low_scale_config)
1474
+ self.low_scale_key = low_scale_key
1475
+ self.noise_level_key = noise_level_key
1476
+
1477
+ def instantiate_low_stage(self, config):
1478
+ model = instantiate_from_config(config)
1479
+ self.low_scale_model = model.eval()
1480
+ self.low_scale_model.train = disabled_train
1481
+ for param in self.low_scale_model.parameters():
1482
+ param.requires_grad = False
1483
+
1484
+ @torch.no_grad()
1485
+ def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
1486
+ if not log_mode:
1487
+ z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
1488
+ else:
1489
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1490
+ force_c_encode=True, return_original_cond=True, bs=bs)
1491
+ x_low = batch[self.low_scale_key][:bs]
1492
+ x_low = rearrange(x_low, 'b h w c -> b c h w')
1493
+ x_low = x_low.to(memory_format=torch.contiguous_format).float()
1494
+ zx, noise_level = self.low_scale_model(x_low)
1495
+ if self.noise_level_key is not None:
1496
+ # get noise level from batch instead, e.g. when extracting a custom noise level for bsr
1497
+ raise NotImplementedError('TODO')
1498
+
1499
+ all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
1500
+ if log_mode:
1501
+ # TODO: maybe disable if too expensive
1502
+ x_low_rec = self.low_scale_model.decode(zx)
1503
+ return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
1504
+ return z, all_conds
1505
+
1506
+ @torch.no_grad()
1507
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1508
+ plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
1509
+ unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
1510
+ **kwargs):
1511
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
1512
+ use_ddim = ddim_steps is not None
1513
+
1514
+ log = dict()
1515
+ z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N,
1516
+ log_mode=True)
1517
+ N = min(x.shape[0], N)
1518
+ n_row = min(x.shape[0], n_row)
1519
+ log["inputs"] = x
1520
+ log["reconstruction"] = xrec
1521
+ log["x_lr"] = x_low
1522
+ log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec
1523
+ if self.model.conditioning_key is not None:
1524
+ if hasattr(self.cond_stage_model, "decode"):
1525
+ xc = self.cond_stage_model.decode(c)
1526
+ log["conditioning"] = xc
1527
+ elif self.cond_stage_key in ["caption", "txt"]:
1528
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
1529
+ log["conditioning"] = xc
1530
+ elif self.cond_stage_key in ['class_label', 'cls']:
1531
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
1532
+ log['conditioning'] = xc
1533
+ elif isimage(xc):
1534
+ log["conditioning"] = xc
1535
+ if ismap(xc):
1536
+ log["original_conditioning"] = self.to_rgb(xc)
1537
+
1538
+ if plot_diffusion_rows:
1539
+ # get diffusion row
1540
+ diffusion_row = list()
1541
+ z_start = z[:n_row]
1542
+ for t in range(self.num_timesteps):
1543
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1544
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1545
+ t = t.to(self.device).long()
1546
+ noise = torch.randn_like(z_start)
1547
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1548
+ diffusion_row.append(self.decode_first_stage(z_noisy))
1549
+
1550
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1551
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1552
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1553
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1554
+ log["diffusion_row"] = diffusion_grid
1555
+
1556
+ if sample:
1557
+ # get denoise row
1558
+ with ema_scope("Sampling"):
1559
+ samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1560
+ ddim_steps=ddim_steps, eta=ddim_eta)
1561
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1562
+ x_samples = self.decode_first_stage(samples)
1563
+ log["samples"] = x_samples
1564
+ if plot_denoise_rows:
1565
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1566
+ log["denoise_row"] = denoise_grid
1567
+
1568
+ if unconditional_guidance_scale > 1.0:
1569
+ uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1570
+ # TODO explore better "unconditional" choices for the other keys
1571
+ # maybe guide away from empty text label and highest noise level and maximally degraded zx?
1572
+ uc = dict()
1573
+ for k in c:
1574
+ if k == "c_crossattn":
1575
+ assert isinstance(c[k], list) and len(c[k]) == 1
1576
+ uc[k] = [uc_tmp]
1577
+ elif k == "c_adm": # todo: only run with text-based guidance?
1578
+ assert isinstance(c[k], torch.Tensor)
1579
+ #uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level
1580
+ uc[k] = c[k]
1581
+ elif isinstance(c[k], list):
1582
+ uc[k] = [c[k][i] for i in range(len(c[k]))]
1583
+ else:
1584
+ uc[k] = c[k]
1585
+
1586
+ with ema_scope("Sampling with classifier-free guidance"):
1587
+ samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1588
+ ddim_steps=ddim_steps, eta=ddim_eta,
1589
+ unconditional_guidance_scale=unconditional_guidance_scale,
1590
+ unconditional_conditioning=uc,
1591
+ )
1592
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
1593
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1594
+
1595
+ if plot_progressive_rows:
1596
+ with ema_scope("Plotting Progressives"):
1597
+ img, progressives = self.progressive_denoising(c,
1598
+ shape=(self.channels, self.image_size, self.image_size),
1599
+ batch_size=N)
1600
+ prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
1601
+ log["progressive_row"] = prog_row
1602
+
1603
+ return log
1604
+
1605
+
1606
+ class LatentFinetuneDiffusion(LatentDiffusion):
1607
+ """
1608
+ Basis for different finetunas, such as inpainting or depth2image
1609
+ To disable finetuning mode, set finetune_keys to None
1610
+ """
1611
+
1612
+ def __init__(self,
1613
+ concat_keys: tuple,
1614
+ finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
1615
+ "model_ema.diffusion_modelinput_blocks00weight"
1616
+ ),
1617
+ keep_finetune_dims=4,
1618
+ # if model was trained without concat mode before and we would like to keep these channels
1619
+ c_concat_log_start=None, # to log reconstruction of c_concat codes
1620
+ c_concat_log_end=None,
1621
+ *args, **kwargs
1622
+ ):
1623
+ ckpt_path = kwargs.pop("ckpt_path", None)
1624
+ ignore_keys = kwargs.pop("ignore_keys", list())
1625
+ super().__init__(*args, **kwargs)
1626
+ self.finetune_keys = finetune_keys
1627
+ self.concat_keys = concat_keys
1628
+ self.keep_dims = keep_finetune_dims
1629
+ self.c_concat_log_start = c_concat_log_start
1630
+ self.c_concat_log_end = c_concat_log_end
1631
+ if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
1632
+ if exists(ckpt_path):
1633
+ self.init_from_ckpt(ckpt_path, ignore_keys)
1634
+
1635
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
1636
+ sd = torch.load(path, map_location="cpu")
1637
+ if "state_dict" in list(sd.keys()):
1638
+ sd = sd["state_dict"]
1639
+ keys = list(sd.keys())
1640
+ for k in keys:
1641
+ for ik in ignore_keys:
1642
+ if k.startswith(ik):
1643
+ print("Deleting key {} from state_dict.".format(k))
1644
+ del sd[k]
1645
+
1646
+ # make it explicit, finetune by including extra input channels
1647
+ if exists(self.finetune_keys) and k in self.finetune_keys:
1648
+ new_entry = None
1649
+ for name, param in self.named_parameters():
1650
+ if name in self.finetune_keys:
1651
+ print(
1652
+ f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
1653
+ new_entry = torch.zeros_like(param) # zero init
1654
+ assert exists(new_entry), 'did not find matching parameter to modify'
1655
+ new_entry[:, :self.keep_dims, ...] = sd[k]
1656
+ sd[k] = new_entry
1657
+
1658
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
1659
+ sd, strict=False)
1660
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
1661
+ if len(missing) > 0:
1662
+ print(f"Missing Keys: {missing}")
1663
+ if len(unexpected) > 0:
1664
+ print(f"Unexpected Keys: {unexpected}")
1665
+
1666
+ @torch.no_grad()
1667
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1668
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
1669
+ plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
1670
+ use_ema_scope=True,
1671
+ **kwargs):
1672
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
1673
+ use_ddim = ddim_steps is not None
1674
+
1675
+ log = dict()
1676
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
1677
+ c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
1678
+ N = min(x.shape[0], N)
1679
+ n_row = min(x.shape[0], n_row)
1680
+ log["inputs"] = x
1681
+ log["reconstruction"] = xrec
1682
+ if self.model.conditioning_key is not None:
1683
+ if hasattr(self.cond_stage_model, "decode"):
1684
+ xc = self.cond_stage_model.decode(c)
1685
+ log["conditioning"] = xc
1686
+ elif self.cond_stage_key in ["caption", "txt"]:
1687
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
1688
+ log["conditioning"] = xc
1689
+ elif self.cond_stage_key in ['class_label', 'cls']:
1690
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
1691
+ log['conditioning'] = xc
1692
+ elif isimage(xc):
1693
+ log["conditioning"] = xc
1694
+ if ismap(xc):
1695
+ log["original_conditioning"] = self.to_rgb(xc)
1696
+
1697
+ if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
1698
+ log["c_concat_decoded"] = self.decode_first_stage(c_cat[:, self.c_concat_log_start:self.c_concat_log_end])
1699
+
1700
+ if plot_diffusion_rows:
1701
+ # get diffusion row
1702
+ diffusion_row = list()
1703
+ z_start = z[:n_row]
1704
+ for t in range(self.num_timesteps):
1705
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1706
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1707
+ t = t.to(self.device).long()
1708
+ noise = torch.randn_like(z_start)
1709
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1710
+ diffusion_row.append(self.decode_first_stage(z_noisy))
1711
+
1712
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1713
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1714
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1715
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1716
+ log["diffusion_row"] = diffusion_grid
1717
+
1718
+ if sample:
1719
+ # get denoise row
1720
+ with ema_scope("Sampling"):
1721
+ samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
1722
+ batch_size=N, ddim=use_ddim,
1723
+ ddim_steps=ddim_steps, eta=ddim_eta)
1724
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1725
+ x_samples = self.decode_first_stage(samples)
1726
+ log["samples"] = x_samples
1727
+ if plot_denoise_rows:
1728
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1729
+ log["denoise_row"] = denoise_grid
1730
+
1731
+ if unconditional_guidance_scale > 1.0:
1732
+ uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1733
+ uc_cat = c_cat
1734
+ uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
1735
+ with ema_scope("Sampling with classifier-free guidance"):
1736
+ samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
1737
+ batch_size=N, ddim=use_ddim,
1738
+ ddim_steps=ddim_steps, eta=ddim_eta,
1739
+ unconditional_guidance_scale=unconditional_guidance_scale,
1740
+ unconditional_conditioning=uc_full,
1741
+ )
1742
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
1743
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1744
+
1745
+ return log
1746
+
1747
+
1748
+ class LatentInpaintDiffusion(LatentFinetuneDiffusion):
1749
+ """
1750
+ can either run as pure inpainting model (only concat mode) or with mixed conditionings,
1751
+ e.g. mask as concat and text via cross-attn.
1752
+ To disable finetuning mode, set finetune_keys to None
1753
+ """
1754
+
1755
+ def __init__(self,
1756
+ concat_keys=("mask", "masked_image"),
1757
+ masked_image_key="masked_image",
1758
+ *args, **kwargs
1759
+ ):
1760
+ super().__init__(concat_keys, *args, **kwargs)
1761
+ self.masked_image_key = masked_image_key
1762
+ assert self.masked_image_key in concat_keys
1763
+
1764
+ @torch.no_grad()
1765
+ def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
1766
+ # note: restricted to non-trainable encoders currently
1767
+ assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
1768
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1769
+ force_c_encode=True, return_original_cond=True, bs=bs)
1770
+
1771
+ assert exists(self.concat_keys)
1772
+ c_cat = list()
1773
+ for ck in self.concat_keys:
1774
+ cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
1775
+ if bs is not None:
1776
+ cc = cc[:bs]
1777
+ cc = cc.to(self.device)
1778
+ bchw = z.shape
1779
+ if ck != self.masked_image_key:
1780
+ cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
1781
+ else:
1782
+ cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
1783
+ c_cat.append(cc)
1784
+ c_cat = torch.cat(c_cat, dim=1)
1785
+ all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
1786
+ if return_first_stage_outputs:
1787
+ return z, all_conds, x, xrec, xc
1788
+ return z, all_conds
1789
+
1790
+ @torch.no_grad()
1791
+ def log_images(self, *args, **kwargs):
1792
+ log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs)
1793
+ log["masked_image"] = rearrange(args[0]["masked_image"],
1794
+ 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
1795
+ return log
1796
+
1797
+
1798
+ class LatentDepth2ImageDiffusion(LatentFinetuneDiffusion):
1799
+ """
1800
+ condition on monocular depth estimation
1801
+ """
1802
+
1803
+ def __init__(self, depth_stage_config, concat_keys=("midas_in",), *args, **kwargs):
1804
+ super().__init__(concat_keys=concat_keys, *args, **kwargs)
1805
+ self.depth_model = instantiate_from_config(depth_stage_config)
1806
+ self.depth_stage_key = concat_keys[0]
1807
+
1808
+ @torch.no_grad()
1809
+ def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
1810
+ # note: restricted to non-trainable encoders currently
1811
+ assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for depth2img'
1812
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1813
+ force_c_encode=True, return_original_cond=True, bs=bs)
1814
+
1815
+ assert exists(self.concat_keys)
1816
+ assert len(self.concat_keys) == 1
1817
+ c_cat = list()
1818
+ for ck in self.concat_keys:
1819
+ cc = batch[ck]
1820
+ if bs is not None:
1821
+ cc = cc[:bs]
1822
+ cc = cc.to(self.device)
1823
+ cc = self.depth_model(cc)
1824
+ cc = torch.nn.functional.interpolate(
1825
+ cc,
1826
+ size=z.shape[2:],
1827
+ mode="bicubic",
1828
+ align_corners=False,
1829
+ )
1830
+
1831
+ depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3],
1832
+ keepdim=True)
1833
+ cc = 2. * (cc - depth_min) / (depth_max - depth_min + 0.001) - 1.
1834
+ c_cat.append(cc)
1835
+ c_cat = torch.cat(c_cat, dim=1)
1836
+ all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
1837
+ if return_first_stage_outputs:
1838
+ return z, all_conds, x, xrec, xc
1839
+ return z, all_conds
1840
+
1841
+ @torch.no_grad()
1842
+ def log_images(self, *args, **kwargs):
1843
+ log = super().log_images(*args, **kwargs)
1844
+ depth = self.depth_model(args[0][self.depth_stage_key])
1845
+ depth_min, depth_max = torch.amin(depth, dim=[1, 2, 3], keepdim=True), \
1846
+ torch.amax(depth, dim=[1, 2, 3], keepdim=True)
1847
+ log["depth"] = 2. * (depth - depth_min) / (depth_max - depth_min) - 1.
1848
+ return log
1849
+
1850
+
1851
+ class LatentUpscaleFinetuneDiffusion(LatentFinetuneDiffusion):
1852
+ """
1853
+ condition on low-res image (and optionally on some spatial noise augmentation)
1854
+ """
1855
+ def __init__(self, concat_keys=("lr",), reshuffle_patch_size=None,
1856
+ low_scale_config=None, low_scale_key=None, *args, **kwargs):
1857
+ super().__init__(concat_keys=concat_keys, *args, **kwargs)
1858
+ self.reshuffle_patch_size = reshuffle_patch_size
1859
+ self.low_scale_model = None
1860
+ if low_scale_config is not None:
1861
+ print("Initializing a low-scale model")
1862
+ assert exists(low_scale_key)
1863
+ self.instantiate_low_stage(low_scale_config)
1864
+ self.low_scale_key = low_scale_key
1865
+
1866
+ def instantiate_low_stage(self, config):
1867
+ model = instantiate_from_config(config)
1868
+ self.low_scale_model = model.eval()
1869
+ self.low_scale_model.train = disabled_train
1870
+ for param in self.low_scale_model.parameters():
1871
+ param.requires_grad = False
1872
+
1873
+ @torch.no_grad()
1874
+ def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
1875
+ # note: restricted to non-trainable encoders currently
1876
+ assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for upscaling-ft'
1877
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1878
+ force_c_encode=True, return_original_cond=True, bs=bs)
1879
+
1880
+ assert exists(self.concat_keys)
1881
+ assert len(self.concat_keys) == 1
1882
+ # optionally make spatial noise_level here
1883
+ c_cat = list()
1884
+ noise_level = None
1885
+ for ck in self.concat_keys:
1886
+ cc = batch[ck]
1887
+ cc = rearrange(cc, 'b h w c -> b c h w')
1888
+ if exists(self.reshuffle_patch_size):
1889
+ assert isinstance(self.reshuffle_patch_size, int)
1890
+ cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w',
1891
+ p1=self.reshuffle_patch_size, p2=self.reshuffle_patch_size)
1892
+ if bs is not None:
1893
+ cc = cc[:bs]
1894
+ cc = cc.to(self.device)
1895
+ if exists(self.low_scale_model) and ck == self.low_scale_key:
1896
+ cc, noise_level = self.low_scale_model(cc)
1897
+ c_cat.append(cc)
1898
+ c_cat = torch.cat(c_cat, dim=1)
1899
+ if exists(noise_level):
1900
+ all_conds = {"c_concat": [c_cat], "c_crossattn": [c], "c_adm": noise_level}
1901
+ else:
1902
+ all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
1903
+ if return_first_stage_outputs:
1904
+ return z, all_conds, x, xrec, xc
1905
+ return z, all_conds
1906
+
1907
+ @torch.no_grad()
1908
+ def log_images(self, *args, **kwargs):
1909
+ log = super().log_images(*args, **kwargs)
1910
+ log["lr"] = rearrange(args[0]["lr"], 'b h w c -> b c h w')
1911
+ return log
Control-Color/ldm/models/diffusion/dpm_solver/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .sampler import DPMSolverSampler
Control-Color/ldm/models/diffusion/dpm_solver/dpm_solver.py ADDED
@@ -0,0 +1,1154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import math
4
+ from tqdm import tqdm
5
+
6
+
7
+ class NoiseScheduleVP:
8
+ def __init__(
9
+ self,
10
+ schedule='discrete',
11
+ betas=None,
12
+ alphas_cumprod=None,
13
+ continuous_beta_0=0.1,
14
+ continuous_beta_1=20.,
15
+ ):
16
+ """Create a wrapper class for the forward SDE (VP type).
17
+ ***
18
+ Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
19
+ We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
20
+ ***
21
+ The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
22
+ We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
23
+ Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
24
+ log_alpha_t = self.marginal_log_mean_coeff(t)
25
+ sigma_t = self.marginal_std(t)
26
+ lambda_t = self.marginal_lambda(t)
27
+ Moreover, as lambda(t) is an invertible function, we also support its inverse function:
28
+ t = self.inverse_lambda(lambda_t)
29
+ ===============================================================
30
+ We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
31
+ 1. For discrete-time DPMs:
32
+ For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
33
+ t_i = (i + 1) / N
34
+ e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
35
+ We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
36
+ Args:
37
+ betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
38
+ alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
39
+ Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
40
+ **Important**: Please pay special attention for the args for `alphas_cumprod`:
41
+ The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
42
+ q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
43
+ Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
44
+ alpha_{t_n} = \sqrt{\hat{alpha_n}},
45
+ and
46
+ log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
47
+ 2. For continuous-time DPMs:
48
+ We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
49
+ schedule are the default settings in DDPM and improved-DDPM:
50
+ Args:
51
+ beta_min: A `float` number. The smallest beta for the linear schedule.
52
+ beta_max: A `float` number. The largest beta for the linear schedule.
53
+ cosine_s: A `float` number. The hyperparameter in the cosine schedule.
54
+ cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
55
+ T: A `float` number. The ending time of the forward process.
56
+ ===============================================================
57
+ Args:
58
+ schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
59
+ 'linear' or 'cosine' for continuous-time DPMs.
60
+ Returns:
61
+ A wrapper object of the forward SDE (VP type).
62
+
63
+ ===============================================================
64
+ Example:
65
+ # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
66
+ >>> ns = NoiseScheduleVP('discrete', betas=betas)
67
+ # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
68
+ >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
69
+ # For continuous-time DPMs (VPSDE), linear schedule:
70
+ >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
71
+ """
72
+
73
+ if schedule not in ['discrete', 'linear', 'cosine']:
74
+ raise ValueError(
75
+ "Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(
76
+ schedule))
77
+
78
+ self.schedule = schedule
79
+ if schedule == 'discrete':
80
+ if betas is not None:
81
+ log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
82
+ else:
83
+ assert alphas_cumprod is not None
84
+ log_alphas = 0.5 * torch.log(alphas_cumprod)
85
+ self.total_N = len(log_alphas)
86
+ self.T = 1.
87
+ self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
88
+ self.log_alpha_array = log_alphas.reshape((1, -1,))
89
+ else:
90
+ self.total_N = 1000
91
+ self.beta_0 = continuous_beta_0
92
+ self.beta_1 = continuous_beta_1
93
+ self.cosine_s = 0.008
94
+ self.cosine_beta_max = 999.
95
+ self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (
96
+ 1. + self.cosine_s) / math.pi - self.cosine_s
97
+ self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
98
+ self.schedule = schedule
99
+ if schedule == 'cosine':
100
+ # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
101
+ # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
102
+ self.T = 0.9946
103
+ else:
104
+ self.T = 1.
105
+
106
+ def marginal_log_mean_coeff(self, t):
107
+ """
108
+ Compute log(alpha_t) of a given continuous-time label t in [0, T].
109
+ """
110
+ if self.schedule == 'discrete':
111
+ return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device),
112
+ self.log_alpha_array.to(t.device)).reshape((-1))
113
+ elif self.schedule == 'linear':
114
+ return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
115
+ elif self.schedule == 'cosine':
116
+ log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
117
+ log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
118
+ return log_alpha_t
119
+
120
+ def marginal_alpha(self, t):
121
+ """
122
+ Compute alpha_t of a given continuous-time label t in [0, T].
123
+ """
124
+ return torch.exp(self.marginal_log_mean_coeff(t))
125
+
126
+ def marginal_std(self, t):
127
+ """
128
+ Compute sigma_t of a given continuous-time label t in [0, T].
129
+ """
130
+ return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
131
+
132
+ def marginal_lambda(self, t):
133
+ """
134
+ Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
135
+ """
136
+ log_mean_coeff = self.marginal_log_mean_coeff(t)
137
+ log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
138
+ return log_mean_coeff - log_std
139
+
140
+ def inverse_lambda(self, lamb):
141
+ """
142
+ Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
143
+ """
144
+ if self.schedule == 'linear':
145
+ tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
146
+ Delta = self.beta_0 ** 2 + tmp
147
+ return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
148
+ elif self.schedule == 'discrete':
149
+ log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
150
+ t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]),
151
+ torch.flip(self.t_array.to(lamb.device), [1]))
152
+ return t.reshape((-1,))
153
+ else:
154
+ log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
155
+ t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (
156
+ 1. + self.cosine_s) / math.pi - self.cosine_s
157
+ t = t_fn(log_alpha)
158
+ return t
159
+
160
+
161
+ def model_wrapper(
162
+ model,
163
+ noise_schedule,
164
+ model_type="noise",
165
+ model_kwargs={},
166
+ guidance_type="uncond",
167
+ condition=None,
168
+ unconditional_condition=None,
169
+ guidance_scale=1.,
170
+ classifier_fn=None,
171
+ classifier_kwargs={},
172
+ ):
173
+ """Create a wrapper function for the noise prediction model.
174
+ DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
175
+ firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
176
+ We support four types of the diffusion model by setting `model_type`:
177
+ 1. "noise": noise prediction model. (Trained by predicting noise).
178
+ 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
179
+ 3. "v": velocity prediction model. (Trained by predicting the velocity).
180
+ The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
181
+ [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
182
+ arXiv preprint arXiv:2202.00512 (2022).
183
+ [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
184
+ arXiv preprint arXiv:2210.02303 (2022).
185
+
186
+ 4. "score": marginal score function. (Trained by denoising score matching).
187
+ Note that the score function and the noise prediction model follows a simple relationship:
188
+ ```
189
+ noise(x_t, t) = -sigma_t * score(x_t, t)
190
+ ```
191
+ We support three types of guided sampling by DPMs by setting `guidance_type`:
192
+ 1. "uncond": unconditional sampling by DPMs.
193
+ The input `model` has the following format:
194
+ ``
195
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
196
+ ``
197
+ 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
198
+ The input `model` has the following format:
199
+ ``
200
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
201
+ ``
202
+ The input `classifier_fn` has the following format:
203
+ ``
204
+ classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
205
+ ``
206
+ [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
207
+ in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
208
+ 3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
209
+ The input `model` has the following format:
210
+ ``
211
+ model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
212
+ ``
213
+ And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
214
+ [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
215
+ arXiv preprint arXiv:2207.12598 (2022).
216
+
217
+ The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
218
+ or continuous-time labels (i.e. epsilon to T).
219
+ We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
220
+ ``
221
+ def model_fn(x, t_continuous) -> noise:
222
+ t_input = get_model_input_time(t_continuous)
223
+ return noise_pred(model, x, t_input, **model_kwargs)
224
+ ``
225
+ where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
226
+ ===============================================================
227
+ Args:
228
+ model: A diffusion model with the corresponding format described above.
229
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
230
+ model_type: A `str`. The parameterization type of the diffusion model.
231
+ "noise" or "x_start" or "v" or "score".
232
+ model_kwargs: A `dict`. A dict for the other inputs of the model function.
233
+ guidance_type: A `str`. The type of the guidance for sampling.
234
+ "uncond" or "classifier" or "classifier-free".
235
+ condition: A pytorch tensor. The condition for the guided sampling.
236
+ Only used for "classifier" or "classifier-free" guidance type.
237
+ unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
238
+ Only used for "classifier-free" guidance type.
239
+ guidance_scale: A `float`. The scale for the guided sampling.
240
+ classifier_fn: A classifier function. Only used for the classifier guidance.
241
+ classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
242
+ Returns:
243
+ A noise prediction model that accepts the noised data and the continuous time as the inputs.
244
+ """
245
+
246
+ def get_model_input_time(t_continuous):
247
+ """
248
+ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
249
+ For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
250
+ For continuous-time DPMs, we just use `t_continuous`.
251
+ """
252
+ if noise_schedule.schedule == 'discrete':
253
+ return (t_continuous - 1. / noise_schedule.total_N) * 1000.
254
+ else:
255
+ return t_continuous
256
+
257
+ def noise_pred_fn(x, t_continuous, cond=None):
258
+ if t_continuous.reshape((-1,)).shape[0] == 1:
259
+ t_continuous = t_continuous.expand((x.shape[0]))
260
+ t_input = get_model_input_time(t_continuous)
261
+ if cond is None:
262
+ output = model(x, t_input, **model_kwargs)
263
+ else:
264
+ output = model(x, t_input, cond, **model_kwargs)
265
+ if model_type == "noise":
266
+ return output
267
+ elif model_type == "x_start":
268
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
269
+ dims = x.dim()
270
+ return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
271
+ elif model_type == "v":
272
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
273
+ dims = x.dim()
274
+ return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
275
+ elif model_type == "score":
276
+ sigma_t = noise_schedule.marginal_std(t_continuous)
277
+ dims = x.dim()
278
+ return -expand_dims(sigma_t, dims) * output
279
+
280
+ def cond_grad_fn(x, t_input):
281
+ """
282
+ Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
283
+ """
284
+ with torch.enable_grad():
285
+ x_in = x.detach().requires_grad_(True)
286
+ log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
287
+ return torch.autograd.grad(log_prob.sum(), x_in)[0]
288
+
289
+ def model_fn(x, t_continuous):
290
+ """
291
+ The noise predicition model function that is used for DPM-Solver.
292
+ """
293
+ if t_continuous.reshape((-1,)).shape[0] == 1:
294
+ t_continuous = t_continuous.expand((x.shape[0]))
295
+ if guidance_type == "uncond":
296
+ return noise_pred_fn(x, t_continuous)
297
+ elif guidance_type == "classifier":
298
+ assert classifier_fn is not None
299
+ t_input = get_model_input_time(t_continuous)
300
+ cond_grad = cond_grad_fn(x, t_input)
301
+ sigma_t = noise_schedule.marginal_std(t_continuous)
302
+ noise = noise_pred_fn(x, t_continuous)
303
+ return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
304
+ elif guidance_type == "classifier-free":
305
+ if guidance_scale == 1. or unconditional_condition is None:
306
+ return noise_pred_fn(x, t_continuous, cond=condition)
307
+ else:
308
+ x_in = torch.cat([x] * 2)
309
+ t_in = torch.cat([t_continuous] * 2)
310
+ c_in = torch.cat([unconditional_condition, condition])
311
+ noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
312
+ return noise_uncond + guidance_scale * (noise - noise_uncond)
313
+
314
+ assert model_type in ["noise", "x_start", "v"]
315
+ assert guidance_type in ["uncond", "classifier", "classifier-free"]
316
+ return model_fn
317
+
318
+
319
+ class DPM_Solver:
320
+ def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
321
+ """Construct a DPM-Solver.
322
+ We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
323
+ If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
324
+ If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
325
+ In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
326
+ The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
327
+ Args:
328
+ model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
329
+ ``
330
+ def model_fn(x, t_continuous):
331
+ return noise
332
+ ``
333
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
334
+ predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
335
+ thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
336
+ max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
337
+
338
+ [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
339
+ """
340
+ self.model = model_fn
341
+ self.noise_schedule = noise_schedule
342
+ self.predict_x0 = predict_x0
343
+ self.thresholding = thresholding
344
+ self.max_val = max_val
345
+
346
+ def noise_prediction_fn(self, x, t):
347
+ """
348
+ Return the noise prediction model.
349
+ """
350
+ return self.model(x, t)
351
+
352
+ def data_prediction_fn(self, x, t):
353
+ """
354
+ Return the data prediction model (with thresholding).
355
+ """
356
+ noise = self.noise_prediction_fn(x, t)
357
+ dims = x.dim()
358
+ alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
359
+ x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
360
+ if self.thresholding:
361
+ p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
362
+ s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
363
+ s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
364
+ x0 = torch.clamp(x0, -s, s) / s
365
+ return x0
366
+
367
+ def model_fn(self, x, t):
368
+ """
369
+ Convert the model to the noise prediction model or the data prediction model.
370
+ """
371
+ if self.predict_x0:
372
+ return self.data_prediction_fn(x, t)
373
+ else:
374
+ return self.noise_prediction_fn(x, t)
375
+
376
+ def get_time_steps(self, skip_type, t_T, t_0, N, device):
377
+ """Compute the intermediate time steps for sampling.
378
+ Args:
379
+ skip_type: A `str`. The type for the spacing of the time steps. We support three types:
380
+ - 'logSNR': uniform logSNR for the time steps.
381
+ - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
382
+ - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
383
+ t_T: A `float`. The starting time of the sampling (default is T).
384
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
385
+ N: A `int`. The total number of the spacing of the time steps.
386
+ device: A torch device.
387
+ Returns:
388
+ A pytorch tensor of the time steps, with the shape (N + 1,).
389
+ """
390
+ if skip_type == 'logSNR':
391
+ lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
392
+ lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
393
+ logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
394
+ return self.noise_schedule.inverse_lambda(logSNR_steps)
395
+ elif skip_type == 'time_uniform':
396
+ return torch.linspace(t_T, t_0, N + 1).to(device)
397
+ elif skip_type == 'time_quadratic':
398
+ t_order = 2
399
+ t = torch.linspace(t_T ** (1. / t_order), t_0 ** (1. / t_order), N + 1).pow(t_order).to(device)
400
+ return t
401
+ else:
402
+ raise ValueError(
403
+ "Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
404
+
405
+ def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
406
+ """
407
+ Get the order of each step for sampling by the singlestep DPM-Solver.
408
+ We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
409
+ Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
410
+ - If order == 1:
411
+ We take `steps` of DPM-Solver-1 (i.e. DDIM).
412
+ - If order == 2:
413
+ - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
414
+ - If steps % 2 == 0, we use K steps of DPM-Solver-2.
415
+ - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
416
+ - If order == 3:
417
+ - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
418
+ - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
419
+ - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
420
+ - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
421
+ ============================================
422
+ Args:
423
+ order: A `int`. The max order for the solver (2 or 3).
424
+ steps: A `int`. The total number of function evaluations (NFE).
425
+ skip_type: A `str`. The type for the spacing of the time steps. We support three types:
426
+ - 'logSNR': uniform logSNR for the time steps.
427
+ - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
428
+ - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
429
+ t_T: A `float`. The starting time of the sampling (default is T).
430
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
431
+ device: A torch device.
432
+ Returns:
433
+ orders: A list of the solver order of each step.
434
+ """
435
+ if order == 3:
436
+ K = steps // 3 + 1
437
+ if steps % 3 == 0:
438
+ orders = [3, ] * (K - 2) + [2, 1]
439
+ elif steps % 3 == 1:
440
+ orders = [3, ] * (K - 1) + [1]
441
+ else:
442
+ orders = [3, ] * (K - 1) + [2]
443
+ elif order == 2:
444
+ if steps % 2 == 0:
445
+ K = steps // 2
446
+ orders = [2, ] * K
447
+ else:
448
+ K = steps // 2 + 1
449
+ orders = [2, ] * (K - 1) + [1]
450
+ elif order == 1:
451
+ K = 1
452
+ orders = [1, ] * steps
453
+ else:
454
+ raise ValueError("'order' must be '1' or '2' or '3'.")
455
+ if skip_type == 'logSNR':
456
+ # To reproduce the results in DPM-Solver paper
457
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
458
+ else:
459
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
460
+ torch.cumsum(torch.tensor([0, ] + orders)).to(device)]
461
+ return timesteps_outer, orders
462
+
463
+ def denoise_to_zero_fn(self, x, s):
464
+ """
465
+ Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
466
+ """
467
+ return self.data_prediction_fn(x, s)
468
+
469
+ def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
470
+ """
471
+ DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
472
+ Args:
473
+ x: A pytorch tensor. The initial value at time `s`.
474
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
475
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
476
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
477
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
478
+ return_intermediate: A `bool`. If true, also return the model value at time `s`.
479
+ Returns:
480
+ x_t: A pytorch tensor. The approximated solution at time `t`.
481
+ """
482
+ ns = self.noise_schedule
483
+ dims = x.dim()
484
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
485
+ h = lambda_t - lambda_s
486
+ log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
487
+ sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
488
+ alpha_t = torch.exp(log_alpha_t)
489
+
490
+ if self.predict_x0:
491
+ phi_1 = torch.expm1(-h)
492
+ if model_s is None:
493
+ model_s = self.model_fn(x, s)
494
+ x_t = (
495
+ expand_dims(sigma_t / sigma_s, dims) * x
496
+ - expand_dims(alpha_t * phi_1, dims) * model_s
497
+ )
498
+ if return_intermediate:
499
+ return x_t, {'model_s': model_s}
500
+ else:
501
+ return x_t
502
+ else:
503
+ phi_1 = torch.expm1(h)
504
+ if model_s is None:
505
+ model_s = self.model_fn(x, s)
506
+ x_t = (
507
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
508
+ - expand_dims(sigma_t * phi_1, dims) * model_s
509
+ )
510
+ if return_intermediate:
511
+ return x_t, {'model_s': model_s}
512
+ else:
513
+ return x_t
514
+
515
+ def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False,
516
+ solver_type='dpm_solver'):
517
+ """
518
+ Singlestep solver DPM-Solver-2 from time `s` to time `t`.
519
+ Args:
520
+ x: A pytorch tensor. The initial value at time `s`.
521
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
522
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
523
+ r1: A `float`. The hyperparameter of the second-order solver.
524
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
525
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
526
+ return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
527
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
528
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
529
+ Returns:
530
+ x_t: A pytorch tensor. The approximated solution at time `t`.
531
+ """
532
+ if solver_type not in ['dpm_solver', 'taylor']:
533
+ raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
534
+ if r1 is None:
535
+ r1 = 0.5
536
+ ns = self.noise_schedule
537
+ dims = x.dim()
538
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
539
+ h = lambda_t - lambda_s
540
+ lambda_s1 = lambda_s + r1 * h
541
+ s1 = ns.inverse_lambda(lambda_s1)
542
+ log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(
543
+ s1), ns.marginal_log_mean_coeff(t)
544
+ sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
545
+ alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
546
+
547
+ if self.predict_x0:
548
+ phi_11 = torch.expm1(-r1 * h)
549
+ phi_1 = torch.expm1(-h)
550
+
551
+ if model_s is None:
552
+ model_s = self.model_fn(x, s)
553
+ x_s1 = (
554
+ expand_dims(sigma_s1 / sigma_s, dims) * x
555
+ - expand_dims(alpha_s1 * phi_11, dims) * model_s
556
+ )
557
+ model_s1 = self.model_fn(x_s1, s1)
558
+ if solver_type == 'dpm_solver':
559
+ x_t = (
560
+ expand_dims(sigma_t / sigma_s, dims) * x
561
+ - expand_dims(alpha_t * phi_1, dims) * model_s
562
+ - (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
563
+ )
564
+ elif solver_type == 'taylor':
565
+ x_t = (
566
+ expand_dims(sigma_t / sigma_s, dims) * x
567
+ - expand_dims(alpha_t * phi_1, dims) * model_s
568
+ + (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (
569
+ model_s1 - model_s)
570
+ )
571
+ else:
572
+ phi_11 = torch.expm1(r1 * h)
573
+ phi_1 = torch.expm1(h)
574
+
575
+ if model_s is None:
576
+ model_s = self.model_fn(x, s)
577
+ x_s1 = (
578
+ expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
579
+ - expand_dims(sigma_s1 * phi_11, dims) * model_s
580
+ )
581
+ model_s1 = self.model_fn(x_s1, s1)
582
+ if solver_type == 'dpm_solver':
583
+ x_t = (
584
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
585
+ - expand_dims(sigma_t * phi_1, dims) * model_s
586
+ - (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
587
+ )
588
+ elif solver_type == 'taylor':
589
+ x_t = (
590
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
591
+ - expand_dims(sigma_t * phi_1, dims) * model_s
592
+ - (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
593
+ )
594
+ if return_intermediate:
595
+ return x_t, {'model_s': model_s, 'model_s1': model_s1}
596
+ else:
597
+ return x_t
598
+
599
+ def singlestep_dpm_solver_third_update(self, x, s, t, r1=1. / 3., r2=2. / 3., model_s=None, model_s1=None,
600
+ return_intermediate=False, solver_type='dpm_solver'):
601
+ """
602
+ Singlestep solver DPM-Solver-3 from time `s` to time `t`.
603
+ Args:
604
+ x: A pytorch tensor. The initial value at time `s`.
605
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
606
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
607
+ r1: A `float`. The hyperparameter of the third-order solver.
608
+ r2: A `float`. The hyperparameter of the third-order solver.
609
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
610
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
611
+ model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
612
+ If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
613
+ return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
614
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
615
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
616
+ Returns:
617
+ x_t: A pytorch tensor. The approximated solution at time `t`.
618
+ """
619
+ if solver_type not in ['dpm_solver', 'taylor']:
620
+ raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
621
+ if r1 is None:
622
+ r1 = 1. / 3.
623
+ if r2 is None:
624
+ r2 = 2. / 3.
625
+ ns = self.noise_schedule
626
+ dims = x.dim()
627
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
628
+ h = lambda_t - lambda_s
629
+ lambda_s1 = lambda_s + r1 * h
630
+ lambda_s2 = lambda_s + r2 * h
631
+ s1 = ns.inverse_lambda(lambda_s1)
632
+ s2 = ns.inverse_lambda(lambda_s2)
633
+ log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(
634
+ s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
635
+ sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(
636
+ s2), ns.marginal_std(t)
637
+ alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
638
+
639
+ if self.predict_x0:
640
+ phi_11 = torch.expm1(-r1 * h)
641
+ phi_12 = torch.expm1(-r2 * h)
642
+ phi_1 = torch.expm1(-h)
643
+ phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
644
+ phi_2 = phi_1 / h + 1.
645
+ phi_3 = phi_2 / h - 0.5
646
+
647
+ if model_s is None:
648
+ model_s = self.model_fn(x, s)
649
+ if model_s1 is None:
650
+ x_s1 = (
651
+ expand_dims(sigma_s1 / sigma_s, dims) * x
652
+ - expand_dims(alpha_s1 * phi_11, dims) * model_s
653
+ )
654
+ model_s1 = self.model_fn(x_s1, s1)
655
+ x_s2 = (
656
+ expand_dims(sigma_s2 / sigma_s, dims) * x
657
+ - expand_dims(alpha_s2 * phi_12, dims) * model_s
658
+ + r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
659
+ )
660
+ model_s2 = self.model_fn(x_s2, s2)
661
+ if solver_type == 'dpm_solver':
662
+ x_t = (
663
+ expand_dims(sigma_t / sigma_s, dims) * x
664
+ - expand_dims(alpha_t * phi_1, dims) * model_s
665
+ + (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
666
+ )
667
+ elif solver_type == 'taylor':
668
+ D1_0 = (1. / r1) * (model_s1 - model_s)
669
+ D1_1 = (1. / r2) * (model_s2 - model_s)
670
+ D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
671
+ D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
672
+ x_t = (
673
+ expand_dims(sigma_t / sigma_s, dims) * x
674
+ - expand_dims(alpha_t * phi_1, dims) * model_s
675
+ + expand_dims(alpha_t * phi_2, dims) * D1
676
+ - expand_dims(alpha_t * phi_3, dims) * D2
677
+ )
678
+ else:
679
+ phi_11 = torch.expm1(r1 * h)
680
+ phi_12 = torch.expm1(r2 * h)
681
+ phi_1 = torch.expm1(h)
682
+ phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
683
+ phi_2 = phi_1 / h - 1.
684
+ phi_3 = phi_2 / h - 0.5
685
+
686
+ if model_s is None:
687
+ model_s = self.model_fn(x, s)
688
+ if model_s1 is None:
689
+ x_s1 = (
690
+ expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
691
+ - expand_dims(sigma_s1 * phi_11, dims) * model_s
692
+ )
693
+ model_s1 = self.model_fn(x_s1, s1)
694
+ x_s2 = (
695
+ expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
696
+ - expand_dims(sigma_s2 * phi_12, dims) * model_s
697
+ - r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
698
+ )
699
+ model_s2 = self.model_fn(x_s2, s2)
700
+ if solver_type == 'dpm_solver':
701
+ x_t = (
702
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
703
+ - expand_dims(sigma_t * phi_1, dims) * model_s
704
+ - (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
705
+ )
706
+ elif solver_type == 'taylor':
707
+ D1_0 = (1. / r1) * (model_s1 - model_s)
708
+ D1_1 = (1. / r2) * (model_s2 - model_s)
709
+ D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
710
+ D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
711
+ x_t = (
712
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
713
+ - expand_dims(sigma_t * phi_1, dims) * model_s
714
+ - expand_dims(sigma_t * phi_2, dims) * D1
715
+ - expand_dims(sigma_t * phi_3, dims) * D2
716
+ )
717
+
718
+ if return_intermediate:
719
+ return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
720
+ else:
721
+ return x_t
722
+
723
+ def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
724
+ """
725
+ Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
726
+ Args:
727
+ x: A pytorch tensor. The initial value at time `s`.
728
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
729
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
730
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
731
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
732
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
733
+ Returns:
734
+ x_t: A pytorch tensor. The approximated solution at time `t`.
735
+ """
736
+ if solver_type not in ['dpm_solver', 'taylor']:
737
+ raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
738
+ ns = self.noise_schedule
739
+ dims = x.dim()
740
+ model_prev_1, model_prev_0 = model_prev_list
741
+ t_prev_1, t_prev_0 = t_prev_list
742
+ lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(
743
+ t_prev_0), ns.marginal_lambda(t)
744
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
745
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
746
+ alpha_t = torch.exp(log_alpha_t)
747
+
748
+ h_0 = lambda_prev_0 - lambda_prev_1
749
+ h = lambda_t - lambda_prev_0
750
+ r0 = h_0 / h
751
+ D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
752
+ if self.predict_x0:
753
+ if solver_type == 'dpm_solver':
754
+ x_t = (
755
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
756
+ - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
757
+ - 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
758
+ )
759
+ elif solver_type == 'taylor':
760
+ x_t = (
761
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
762
+ - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
763
+ + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
764
+ )
765
+ else:
766
+ if solver_type == 'dpm_solver':
767
+ x_t = (
768
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
769
+ - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
770
+ - 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
771
+ )
772
+ elif solver_type == 'taylor':
773
+ x_t = (
774
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
775
+ - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
776
+ - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
777
+ )
778
+ return x_t
779
+
780
+ def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
781
+ """
782
+ Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
783
+ Args:
784
+ x: A pytorch tensor. The initial value at time `s`.
785
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
786
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
787
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
788
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
789
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
790
+ Returns:
791
+ x_t: A pytorch tensor. The approximated solution at time `t`.
792
+ """
793
+ ns = self.noise_schedule
794
+ dims = x.dim()
795
+ model_prev_2, model_prev_1, model_prev_0 = model_prev_list
796
+ t_prev_2, t_prev_1, t_prev_0 = t_prev_list
797
+ lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(
798
+ t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
799
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
800
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
801
+ alpha_t = torch.exp(log_alpha_t)
802
+
803
+ h_1 = lambda_prev_1 - lambda_prev_2
804
+ h_0 = lambda_prev_0 - lambda_prev_1
805
+ h = lambda_t - lambda_prev_0
806
+ r0, r1 = h_0 / h, h_1 / h
807
+ D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
808
+ D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
809
+ D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
810
+ D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
811
+ if self.predict_x0:
812
+ x_t = (
813
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
814
+ - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
815
+ + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
816
+ - expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h ** 2 - 0.5), dims) * D2
817
+ )
818
+ else:
819
+ x_t = (
820
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
821
+ - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
822
+ - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
823
+ - expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h ** 2 - 0.5), dims) * D2
824
+ )
825
+ return x_t
826
+
827
+ def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None,
828
+ r2=None):
829
+ """
830
+ Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
831
+ Args:
832
+ x: A pytorch tensor. The initial value at time `s`.
833
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
834
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
835
+ order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
836
+ return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
837
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
838
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
839
+ r1: A `float`. The hyperparameter of the second-order or third-order solver.
840
+ r2: A `float`. The hyperparameter of the third-order solver.
841
+ Returns:
842
+ x_t: A pytorch tensor. The approximated solution at time `t`.
843
+ """
844
+ if order == 1:
845
+ return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
846
+ elif order == 2:
847
+ return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate,
848
+ solver_type=solver_type, r1=r1)
849
+ elif order == 3:
850
+ return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate,
851
+ solver_type=solver_type, r1=r1, r2=r2)
852
+ else:
853
+ raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
854
+
855
+ def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
856
+ """
857
+ Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
858
+ Args:
859
+ x: A pytorch tensor. The initial value at time `s`.
860
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
861
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
862
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
863
+ order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
864
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
865
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
866
+ Returns:
867
+ x_t: A pytorch tensor. The approximated solution at time `t`.
868
+ """
869
+ if order == 1:
870
+ return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
871
+ elif order == 2:
872
+ return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
873
+ elif order == 3:
874
+ return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
875
+ else:
876
+ raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
877
+
878
+ def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5,
879
+ solver_type='dpm_solver'):
880
+ """
881
+ The adaptive step size solver based on singlestep DPM-Solver.
882
+ Args:
883
+ x: A pytorch tensor. The initial value at time `t_T`.
884
+ order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
885
+ t_T: A `float`. The starting time of the sampling (default is T).
886
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
887
+ h_init: A `float`. The initial step size (for logSNR).
888
+ atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
889
+ rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
890
+ theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
891
+ t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
892
+ current time and `t_0` is less than `t_err`. The default setting is 1e-5.
893
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
894
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
895
+ Returns:
896
+ x_0: A pytorch tensor. The approximated solution at time `t_0`.
897
+ [1] A. Jolicoeur-Martineau, K. Li, R. PichΓ©-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
898
+ """
899
+ ns = self.noise_schedule
900
+ s = t_T * torch.ones((x.shape[0],)).to(x)
901
+ lambda_s = ns.marginal_lambda(s)
902
+ lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
903
+ h = h_init * torch.ones_like(s).to(x)
904
+ x_prev = x
905
+ nfe = 0
906
+ if order == 2:
907
+ r1 = 0.5
908
+ lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
909
+ higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
910
+ solver_type=solver_type,
911
+ **kwargs)
912
+ elif order == 3:
913
+ r1, r2 = 1. / 3., 2. / 3.
914
+ lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
915
+ return_intermediate=True,
916
+ solver_type=solver_type)
917
+ higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2,
918
+ solver_type=solver_type,
919
+ **kwargs)
920
+ else:
921
+ raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
922
+ while torch.abs((s - t_0)).mean() > t_err:
923
+ t = ns.inverse_lambda(lambda_s + h)
924
+ x_lower, lower_noise_kwargs = lower_update(x, s, t)
925
+ x_higher = higher_update(x, s, t, **lower_noise_kwargs)
926
+ delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
927
+ norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
928
+ E = norm_fn((x_higher - x_lower) / delta).max()
929
+ if torch.all(E <= 1.):
930
+ x = x_higher
931
+ s = t
932
+ x_prev = x_lower
933
+ lambda_s = ns.marginal_lambda(s)
934
+ h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
935
+ nfe += order
936
+ print('adaptive solver nfe', nfe)
937
+ return x
938
+
939
+ def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
940
+ method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
941
+ atol=0.0078, rtol=0.05,
942
+ ):
943
+ """
944
+ Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
945
+ =====================================================
946
+ We support the following algorithms for both noise prediction model and data prediction model:
947
+ - 'singlestep':
948
+ Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
949
+ We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
950
+ The total number of function evaluations (NFE) == `steps`.
951
+ Given a fixed NFE == `steps`, the sampling procedure is:
952
+ - If `order` == 1:
953
+ - Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
954
+ - If `order` == 2:
955
+ - Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
956
+ - If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
957
+ - If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
958
+ - If `order` == 3:
959
+ - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
960
+ - If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
961
+ - If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
962
+ - If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
963
+ - 'multistep':
964
+ Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
965
+ We initialize the first `order` values by lower order multistep solvers.
966
+ Given a fixed NFE == `steps`, the sampling procedure is:
967
+ Denote K = steps.
968
+ - If `order` == 1:
969
+ - We use K steps of DPM-Solver-1 (i.e. DDIM).
970
+ - If `order` == 2:
971
+ - We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
972
+ - If `order` == 3:
973
+ - We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
974
+ - 'singlestep_fixed':
975
+ Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
976
+ We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
977
+ - 'adaptive':
978
+ Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
979
+ We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
980
+ You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
981
+ (NFE) and the sample quality.
982
+ - If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
983
+ - If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
984
+ =====================================================
985
+ Some advices for choosing the algorithm:
986
+ - For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
987
+ Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
988
+ e.g.
989
+ >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
990
+ >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
991
+ skip_type='time_uniform', method='singlestep')
992
+ - For **guided sampling with large guidance scale** by DPMs:
993
+ Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
994
+ e.g.
995
+ >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
996
+ >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
997
+ skip_type='time_uniform', method='multistep')
998
+ We support three types of `skip_type`:
999
+ - 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
1000
+ - 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
1001
+ - 'time_quadratic': quadratic time for the time steps.
1002
+ =====================================================
1003
+ Args:
1004
+ x: A pytorch tensor. The initial value at time `t_start`
1005
+ e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
1006
+ steps: A `int`. The total number of function evaluations (NFE).
1007
+ t_start: A `float`. The starting time of the sampling.
1008
+ If `T` is None, we use self.noise_schedule.T (default is 1.0).
1009
+ t_end: A `float`. The ending time of the sampling.
1010
+ If `t_end` is None, we use 1. / self.noise_schedule.total_N.
1011
+ e.g. if total_N == 1000, we have `t_end` == 1e-3.
1012
+ For discrete-time DPMs:
1013
+ - We recommend `t_end` == 1. / self.noise_schedule.total_N.
1014
+ For continuous-time DPMs:
1015
+ - We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
1016
+ order: A `int`. The order of DPM-Solver.
1017
+ skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
1018
+ method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
1019
+ denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
1020
+ Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
1021
+ This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
1022
+ score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
1023
+ for diffusion models sampling by diffusion SDEs for low-resolutional images
1024
+ (such as CIFAR-10). However, we observed that such trick does not matter for
1025
+ high-resolutional images. As it needs an additional NFE, we do not recommend
1026
+ it for high-resolutional images.
1027
+ lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
1028
+ Only valid for `method=multistep` and `steps < 15`. We empirically find that
1029
+ this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
1030
+ (especially for steps <= 10). So we recommend to set it to be `True`.
1031
+ solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
1032
+ atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
1033
+ rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
1034
+ Returns:
1035
+ x_end: A pytorch tensor. The approximated solution at time `t_end`.
1036
+ """
1037
+ t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
1038
+ t_T = self.noise_schedule.T if t_start is None else t_start
1039
+ device = x.device
1040
+ if method == 'adaptive':
1041
+ with torch.no_grad():
1042
+ x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol,
1043
+ solver_type=solver_type)
1044
+ elif method == 'multistep':
1045
+ assert steps >= order
1046
+ timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
1047
+ assert timesteps.shape[0] - 1 == steps
1048
+ with torch.no_grad():
1049
+ vec_t = timesteps[0].expand((x.shape[0]))
1050
+ model_prev_list = [self.model_fn(x, vec_t)]
1051
+ t_prev_list = [vec_t]
1052
+ # Init the first `order` values by lower order multistep DPM-Solver.
1053
+ for init_order in tqdm(range(1, order), desc="DPM init order"):
1054
+ vec_t = timesteps[init_order].expand(x.shape[0])
1055
+ x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order,
1056
+ solver_type=solver_type)
1057
+ model_prev_list.append(self.model_fn(x, vec_t))
1058
+ t_prev_list.append(vec_t)
1059
+ # Compute the remaining values by `order`-th order multistep DPM-Solver.
1060
+ for step in tqdm(range(order, steps + 1), desc="DPM multistep"):
1061
+ vec_t = timesteps[step].expand(x.shape[0])
1062
+ if lower_order_final and steps < 15:
1063
+ step_order = min(order, steps + 1 - step)
1064
+ else:
1065
+ step_order = order
1066
+ x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, step_order,
1067
+ solver_type=solver_type)
1068
+ for i in range(order - 1):
1069
+ t_prev_list[i] = t_prev_list[i + 1]
1070
+ model_prev_list[i] = model_prev_list[i + 1]
1071
+ t_prev_list[-1] = vec_t
1072
+ # We do not need to evaluate the final model value.
1073
+ if step < steps:
1074
+ model_prev_list[-1] = self.model_fn(x, vec_t)
1075
+ elif method in ['singlestep', 'singlestep_fixed']:
1076
+ if method == 'singlestep':
1077
+ timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order,
1078
+ skip_type=skip_type,
1079
+ t_T=t_T, t_0=t_0,
1080
+ device=device)
1081
+ elif method == 'singlestep_fixed':
1082
+ K = steps // order
1083
+ orders = [order, ] * K
1084
+ timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
1085
+ for i, order in enumerate(orders):
1086
+ t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
1087
+ timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(),
1088
+ N=order, device=device)
1089
+ lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
1090
+ vec_s, vec_t = t_T_inner.tile(x.shape[0]), t_0_inner.tile(x.shape[0])
1091
+ h = lambda_inner[-1] - lambda_inner[0]
1092
+ r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
1093
+ r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
1094
+ x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
1095
+ if denoise_to_zero:
1096
+ x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
1097
+ return x
1098
+
1099
+
1100
+ #############################################################
1101
+ # other utility functions
1102
+ #############################################################
1103
+
1104
+ def interpolate_fn(x, xp, yp):
1105
+ """
1106
+ A piecewise linear function y = f(x), using xp and yp as keypoints.
1107
+ We implement f(x) in a differentiable way (i.e. applicable for autograd).
1108
+ The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
1109
+ Args:
1110
+ x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
1111
+ xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
1112
+ yp: PyTorch tensor with shape [C, K].
1113
+ Returns:
1114
+ The function values f(x), with shape [N, C].
1115
+ """
1116
+ N, K = x.shape[0], xp.shape[1]
1117
+ all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
1118
+ sorted_all_x, x_indices = torch.sort(all_x, dim=2)
1119
+ x_idx = torch.argmin(x_indices, dim=2)
1120
+ cand_start_idx = x_idx - 1
1121
+ start_idx = torch.where(
1122
+ torch.eq(x_idx, 0),
1123
+ torch.tensor(1, device=x.device),
1124
+ torch.where(
1125
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
1126
+ ),
1127
+ )
1128
+ end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
1129
+ start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
1130
+ end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
1131
+ start_idx2 = torch.where(
1132
+ torch.eq(x_idx, 0),
1133
+ torch.tensor(0, device=x.device),
1134
+ torch.where(
1135
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
1136
+ ),
1137
+ )
1138
+ y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
1139
+ start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
1140
+ end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
1141
+ cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
1142
+ return cand
1143
+
1144
+
1145
+ def expand_dims(v, dims):
1146
+ """
1147
+ Expand the tensor `v` to the dim `dims`.
1148
+ Args:
1149
+ `v`: a PyTorch tensor with shape [N].
1150
+ `dim`: a `int`.
1151
+ Returns:
1152
+ a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
1153
+ """
1154
+ return v[(...,) + (None,) * (dims - 1)]
Control-Color/ldm/models/diffusion/dpm_solver/sampler.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+ import torch
3
+
4
+ from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver
5
+
6
+
7
+ MODEL_TYPES = {
8
+ "eps": "noise",
9
+ "v": "v"
10
+ }
11
+
12
+
13
+ class DPMSolverSampler(object):
14
+ def __init__(self, model, **kwargs):
15
+ super().__init__()
16
+ self.model = model
17
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
18
+ self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
19
+
20
+ def register_buffer(self, name, attr):
21
+ if type(attr) == torch.Tensor:
22
+ if attr.device != torch.device("cuda"):
23
+ attr = attr.to(torch.device("cuda"))
24
+ setattr(self, name, attr)
25
+
26
+ @torch.no_grad()
27
+ def sample(self,
28
+ S,
29
+ batch_size,
30
+ shape,
31
+ conditioning=None,
32
+ callback=None,
33
+ normals_sequence=None,
34
+ img_callback=None,
35
+ quantize_x0=False,
36
+ eta=0.,
37
+ mask=None,
38
+ x0=None,
39
+ temperature=1.,
40
+ noise_dropout=0.,
41
+ score_corrector=None,
42
+ corrector_kwargs=None,
43
+ verbose=True,
44
+ x_T=None,
45
+ log_every_t=100,
46
+ unconditional_guidance_scale=1.,
47
+ unconditional_conditioning=None,
48
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
49
+ **kwargs
50
+ ):
51
+ if conditioning is not None:
52
+ if isinstance(conditioning, dict):
53
+ cbs = conditioning[list(conditioning.keys())[0]].shape[0]
54
+ if cbs != batch_size:
55
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
56
+ else:
57
+ if conditioning.shape[0] != batch_size:
58
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
59
+
60
+ # sampling
61
+ C, H, W = shape
62
+ size = (batch_size, C, H, W)
63
+
64
+ print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}')
65
+
66
+ device = self.model.betas.device
67
+ if x_T is None:
68
+ img = torch.randn(size, device=device)
69
+ else:
70
+ img = x_T
71
+
72
+ ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
73
+
74
+ model_fn = model_wrapper(
75
+ lambda x, t, c: self.model.apply_model(x, t, c),
76
+ ns,
77
+ model_type=MODEL_TYPES[self.model.parameterization],
78
+ guidance_type="classifier-free",
79
+ condition=conditioning,
80
+ unconditional_condition=unconditional_conditioning,
81
+ guidance_scale=unconditional_guidance_scale,
82
+ )
83
+
84
+ dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False)
85
+ x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, lower_order_final=True)
86
+
87
+ return x.to(device), None
Control-Color/ldm/models/diffusion/plms.py ADDED
@@ -0,0 +1,244 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+
3
+ import torch
4
+ import numpy as np
5
+ from tqdm import tqdm
6
+ from functools import partial
7
+
8
+ from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
9
+ from ldm.models.diffusion.sampling_util import norm_thresholding
10
+
11
+
12
+ class PLMSSampler(object):
13
+ def __init__(self, model, schedule="linear", **kwargs):
14
+ super().__init__()
15
+ self.model = model
16
+ self.ddpm_num_timesteps = model.num_timesteps
17
+ self.schedule = schedule
18
+
19
+ def register_buffer(self, name, attr):
20
+ if type(attr) == torch.Tensor:
21
+ if attr.device != torch.device("cuda"):
22
+ attr = attr.to(torch.device("cuda"))
23
+ setattr(self, name, attr)
24
+
25
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
26
+ if ddim_eta != 0:
27
+ raise ValueError('ddim_eta must be 0 for PLMS')
28
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
29
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
30
+ alphas_cumprod = self.model.alphas_cumprod
31
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
32
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
33
+
34
+ self.register_buffer('betas', to_torch(self.model.betas))
35
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
36
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
37
+
38
+ # calculations for diffusion q(x_t | x_{t-1}) and others
39
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
40
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
41
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
42
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
43
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
44
+
45
+ # ddim sampling parameters
46
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
47
+ ddim_timesteps=self.ddim_timesteps,
48
+ eta=ddim_eta,verbose=verbose)
49
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
50
+ self.register_buffer('ddim_alphas', ddim_alphas)
51
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
52
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
53
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
54
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
55
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
56
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
57
+
58
+ @torch.no_grad()
59
+ def sample(self,
60
+ S,
61
+ batch_size,
62
+ shape,
63
+ conditioning=None,
64
+ callback=None,
65
+ normals_sequence=None,
66
+ img_callback=None,
67
+ quantize_x0=False,
68
+ eta=0.,
69
+ mask=None,
70
+ x0=None,
71
+ temperature=1.,
72
+ noise_dropout=0.,
73
+ score_corrector=None,
74
+ corrector_kwargs=None,
75
+ verbose=True,
76
+ x_T=None,
77
+ log_every_t=100,
78
+ unconditional_guidance_scale=1.,
79
+ unconditional_conditioning=None,
80
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
81
+ dynamic_threshold=None,
82
+ **kwargs
83
+ ):
84
+ if conditioning is not None:
85
+ if isinstance(conditioning, dict):
86
+ cbs = conditioning[list(conditioning.keys())[0]].shape[0]
87
+ if cbs != batch_size:
88
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
89
+ else:
90
+ if conditioning.shape[0] != batch_size:
91
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
92
+
93
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
94
+ # sampling
95
+ C, H, W = shape
96
+ size = (batch_size, C, H, W)
97
+ print(f'Data shape for PLMS sampling is {size}')
98
+
99
+ samples, intermediates = self.plms_sampling(conditioning, size,
100
+ callback=callback,
101
+ img_callback=img_callback,
102
+ quantize_denoised=quantize_x0,
103
+ mask=mask, x0=x0,
104
+ ddim_use_original_steps=False,
105
+ noise_dropout=noise_dropout,
106
+ temperature=temperature,
107
+ score_corrector=score_corrector,
108
+ corrector_kwargs=corrector_kwargs,
109
+ x_T=x_T,
110
+ log_every_t=log_every_t,
111
+ unconditional_guidance_scale=unconditional_guidance_scale,
112
+ unconditional_conditioning=unconditional_conditioning,
113
+ dynamic_threshold=dynamic_threshold,
114
+ )
115
+ return samples, intermediates
116
+
117
+ @torch.no_grad()
118
+ def plms_sampling(self, cond, shape,
119
+ x_T=None, ddim_use_original_steps=False,
120
+ callback=None, timesteps=None, quantize_denoised=False,
121
+ mask=None, x0=None, img_callback=None, log_every_t=100,
122
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
123
+ unconditional_guidance_scale=1., unconditional_conditioning=None,
124
+ dynamic_threshold=None):
125
+ device = self.model.betas.device
126
+ b = shape[0]
127
+ if x_T is None:
128
+ img = torch.randn(shape, device=device)
129
+ else:
130
+ img = x_T
131
+
132
+ if timesteps is None:
133
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
134
+ elif timesteps is not None and not ddim_use_original_steps:
135
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
136
+ timesteps = self.ddim_timesteps[:subset_end]
137
+
138
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
139
+ time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
140
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
141
+ print(f"Running PLMS Sampling with {total_steps} timesteps")
142
+
143
+ iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
144
+ old_eps = []
145
+
146
+ for i, step in enumerate(iterator):
147
+ index = total_steps - i - 1
148
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
149
+ ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
150
+
151
+ if mask is not None:
152
+ assert x0 is not None
153
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
154
+ img = img_orig * mask + (1. - mask) * img
155
+
156
+ outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
157
+ quantize_denoised=quantize_denoised, temperature=temperature,
158
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
159
+ corrector_kwargs=corrector_kwargs,
160
+ unconditional_guidance_scale=unconditional_guidance_scale,
161
+ unconditional_conditioning=unconditional_conditioning,
162
+ old_eps=old_eps, t_next=ts_next,
163
+ dynamic_threshold=dynamic_threshold)
164
+ img, pred_x0, e_t = outs
165
+ old_eps.append(e_t)
166
+ if len(old_eps) >= 4:
167
+ old_eps.pop(0)
168
+ if callback: callback(i)
169
+ if img_callback: img_callback(pred_x0, i)
170
+
171
+ if index % log_every_t == 0 or index == total_steps - 1:
172
+ intermediates['x_inter'].append(img)
173
+ intermediates['pred_x0'].append(pred_x0)
174
+
175
+ return img, intermediates
176
+
177
+ @torch.no_grad()
178
+ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
179
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
180
+ unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None,
181
+ dynamic_threshold=None):
182
+ b, *_, device = *x.shape, x.device
183
+
184
+ def get_model_output(x, t):
185
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
186
+ e_t = self.model.apply_model(x, t, c)
187
+ else:
188
+ x_in = torch.cat([x] * 2)
189
+ t_in = torch.cat([t] * 2)
190
+ c_in = torch.cat([unconditional_conditioning, c])
191
+ e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
192
+ e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
193
+
194
+ if score_corrector is not None:
195
+ assert self.model.parameterization == "eps"
196
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
197
+
198
+ return e_t
199
+
200
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
201
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
202
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
203
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
204
+
205
+ def get_x_prev_and_pred_x0(e_t, index):
206
+ # select parameters corresponding to the currently considered timestep
207
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
208
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
209
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
210
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
211
+
212
+ # current prediction for x_0
213
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
214
+ if quantize_denoised:
215
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
216
+ if dynamic_threshold is not None:
217
+ pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
218
+ # direction pointing to x_t
219
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
220
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
221
+ if noise_dropout > 0.:
222
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
223
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
224
+ return x_prev, pred_x0
225
+
226
+ e_t = get_model_output(x, t)
227
+ if len(old_eps) == 0:
228
+ # Pseudo Improved Euler (2nd order)
229
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
230
+ e_t_next = get_model_output(x_prev, t_next)
231
+ e_t_prime = (e_t + e_t_next) / 2
232
+ elif len(old_eps) == 1:
233
+ # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
234
+ e_t_prime = (3 * e_t - old_eps[-1]) / 2
235
+ elif len(old_eps) == 2:
236
+ # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
237
+ e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
238
+ elif len(old_eps) >= 3:
239
+ # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
240
+ e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
241
+
242
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
243
+
244
+ return x_prev, pred_x0, e_t
Control-Color/ldm/models/diffusion/sampling_util.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+
4
+
5
+ def append_dims(x, target_dims):
6
+ """Appends dimensions to the end of a tensor until it has target_dims dimensions.
7
+ From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
8
+ dims_to_append = target_dims - x.ndim
9
+ if dims_to_append < 0:
10
+ raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
11
+ return x[(...,) + (None,) * dims_to_append]
12
+
13
+
14
+ def norm_thresholding(x0, value):
15
+ s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
16
+ return x0 * (value / s)
17
+
18
+
19
+ def spatial_norm_thresholding(x0, value):
20
+ # b c h w
21
+ s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
22
+ return x0 * (value / s)
Control-Color/ldm/models/logger.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import numpy as np
4
+ import torch
5
+ import torchvision
6
+ from PIL import Image
7
+ from pytorch_lightning.callbacks import Callback
8
+ from pytorch_lightning.utilities.distributed import rank_zero_only
9
+
10
+ # import pdb
11
+
12
+ class ImageLogger(Callback):
13
+ def __init__(self, batch_frequency=2000, max_images=4, clamp=True, increase_log_steps=True,
14
+ rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False,
15
+ log_images_kwargs=None,ckpt_dir="./ckpt"):
16
+ super().__init__()
17
+ self.rescale = rescale
18
+ self.batch_freq = batch_frequency
19
+ self.max_images = max_images
20
+ if not increase_log_steps:
21
+ self.log_steps = [self.batch_freq]
22
+ self.clamp = clamp
23
+ self.disabled = disabled
24
+ self.log_on_batch_idx = log_on_batch_idx
25
+ self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
26
+ self.log_first_step = log_first_step
27
+ self.ckpt_dir=ckpt_dir
28
+ self.global_save_num=-2000
29
+ self.global_save_num1=-100
30
+
31
+ @rank_zero_only
32
+ def log_local(self, save_dir, split, images, global_step, current_epoch, batch_idx):
33
+ root = os.path.join(save_dir, "image_log", split)
34
+ # print(images)
35
+ for k in images:
36
+ grid = torchvision.utils.make_grid(images[k], nrow=4)
37
+ if self.rescale:
38
+ grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
39
+ grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
40
+ grid = grid.numpy()
41
+ grid = (grid * 255).astype(np.uint8)
42
+ filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(k, global_step, current_epoch, batch_idx)
43
+ path = os.path.join(root, filename)
44
+ os.makedirs(os.path.split(path)[0], exist_ok=True)
45
+ Image.fromarray(grid).save(path)
46
+
47
+ def log_img(self, pl_module, batch, batch_idx, split="train"):
48
+ check_idx = batch_idx # if self.log_on_batch_idx else pl_module.global_step
49
+ if (self.check_frequency(check_idx) and # batch_idx % self.batch_freq == 0
50
+ hasattr(pl_module, "log_images") and
51
+ callable(pl_module.log_images) and
52
+ self.max_images > 0):
53
+ logger = type(pl_module.logger)
54
+
55
+ is_train = pl_module.training
56
+ if is_train:
57
+ pl_module.eval()
58
+
59
+ with torch.no_grad():
60
+ images = pl_module.log_images(batch, split=split, **self.log_images_kwargs)
61
+
62
+ for k in images:
63
+ N = min(images[k].shape[0], self.max_images)
64
+ images[k] = images[k][:N]
65
+ if isinstance(images[k], torch.Tensor):
66
+ images[k] = images[k].detach().cpu()
67
+ if self.clamp:
68
+ images[k] = torch.clamp(images[k], -1., 1.)
69
+
70
+ self.log_local(pl_module.logger.save_dir, split, images,
71
+ pl_module.global_step, pl_module.current_epoch, batch_idx)
72
+
73
+ if is_train:
74
+ pl_module.train()
75
+
76
+ def check_frequency(self, check_idx):
77
+ return check_idx % self.batch_freq == 0
78
+
79
+ def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
80
+ #if not self.disabled:
81
+ #if pl_module.global_step%50 == 0:
82
+ # if pl_module.current_epoch-self.global_save_num1 > 0:
83
+ # print(batch_idx)
84
+ if batch_idx % 500 == 0:
85
+ # print("inside")
86
+ # pdb.set_trace()
87
+ # self.global_save_num1=pl_module.current_epoch
88
+ self.log_img(pl_module, batch, batch_idx, split="train_"+"ckpt_inpainting_from5625_2+3750_exemplar_only_vae")
89
+ #if pl_module.global_step%1200 == 0 and self.check_frequency(batch_idx):
90
+ if batch_idx % 1000 == 0:
91
+ # if pl_module.current_epoch-self.global_save_num>10 and self.check_frequency(batch_idx):
92
+ # self.global_save_num=pl_module.current_epoch
93
+ trainer.save_checkpoint(self.ckpt_dir+"/epoch"+str(pl_module.current_epoch)+"_global-step"+str(pl_module.global_step)+".ckpt")
Control-Color/ldm/modules/__pycache__/attention.cpython-38.pyc ADDED
Binary file (19.1 kB). View file
 
Control-Color/ldm/modules/__pycache__/attention_dcn_control.cpython-38.pyc ADDED
Binary file (23.3 kB). View file
 
Control-Color/ldm/modules/__pycache__/ema.cpython-38.pyc ADDED
Binary file (3.19 kB). View file
 
Control-Color/ldm/modules/attention.py ADDED
@@ -0,0 +1,653 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from inspect import isfunction
2
+ import math
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from torch import nn, einsum
6
+ from einops import rearrange, repeat
7
+ from typing import Optional, Any
8
+
9
+ from ldm.modules.diffusionmodules.util import checkpoint
10
+
11
+
12
+ try:
13
+ import xformers
14
+ import xformers.ops
15
+ XFORMERS_IS_AVAILBLE = True
16
+ except:
17
+ XFORMERS_IS_AVAILBLE = False
18
+
19
+ # CrossAttn precision handling
20
+ import os
21
+ _ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
22
+
23
+ def exists(val):
24
+ return val is not None
25
+
26
+
27
+ def uniq(arr):
28
+ return{el: True for el in arr}.keys()
29
+
30
+
31
+ def default(val, d):
32
+ if exists(val):
33
+ return val
34
+ return d() if isfunction(d) else d
35
+
36
+
37
+ def max_neg_value(t):
38
+ return -torch.finfo(t.dtype).max
39
+
40
+
41
+ def init_(tensor):
42
+ dim = tensor.shape[-1]
43
+ std = 1 / math.sqrt(dim)
44
+ tensor.uniform_(-std, std)
45
+ return tensor
46
+
47
+
48
+ # feedforward
49
+ class GEGLU(nn.Module):
50
+ def __init__(self, dim_in, dim_out):
51
+ super().__init__()
52
+ self.proj = nn.Linear(dim_in, dim_out * 2)
53
+
54
+ def forward(self, x):
55
+ x, gate = self.proj(x).chunk(2, dim=-1)
56
+ return x * F.gelu(gate)
57
+
58
+
59
+ class FeedForward(nn.Module):
60
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
61
+ super().__init__()
62
+ inner_dim = int(dim * mult)
63
+ dim_out = default(dim_out, dim)
64
+ project_in = nn.Sequential(
65
+ nn.Linear(dim, inner_dim),
66
+ nn.GELU()
67
+ ) if not glu else GEGLU(dim, inner_dim)
68
+
69
+ self.net = nn.Sequential(
70
+ project_in,
71
+ nn.Dropout(dropout),
72
+ nn.Linear(inner_dim, dim_out)
73
+ )
74
+
75
+ def forward(self, x):
76
+ return self.net(x)
77
+
78
+
79
+ def zero_module(module):
80
+ """
81
+ Zero out the parameters of a module and return it.
82
+ """
83
+ for p in module.parameters():
84
+ p.detach().zero_()
85
+ return module
86
+
87
+
88
+ def Normalize(in_channels):
89
+ return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
90
+
91
+
92
+ class SpatialSelfAttention(nn.Module):
93
+ def __init__(self, in_channels):
94
+ super().__init__()
95
+ self.in_channels = in_channels
96
+
97
+ self.norm = Normalize(in_channels)
98
+ self.q = torch.nn.Conv2d(in_channels,
99
+ in_channels,
100
+ kernel_size=1,
101
+ stride=1,
102
+ padding=0)
103
+ self.k = torch.nn.Conv2d(in_channels,
104
+ in_channels,
105
+ kernel_size=1,
106
+ stride=1,
107
+ padding=0)
108
+ self.v = torch.nn.Conv2d(in_channels,
109
+ in_channels,
110
+ kernel_size=1,
111
+ stride=1,
112
+ padding=0)
113
+ self.proj_out = torch.nn.Conv2d(in_channels,
114
+ in_channels,
115
+ kernel_size=1,
116
+ stride=1,
117
+ padding=0)
118
+
119
+ def forward(self, x):
120
+ h_ = x
121
+ h_ = self.norm(h_)
122
+ q = self.q(h_)
123
+ k = self.k(h_)
124
+ v = self.v(h_)
125
+
126
+ # compute attention
127
+ b,c,h,w = q.shape
128
+ q = rearrange(q, 'b c h w -> b (h w) c')
129
+ k = rearrange(k, 'b c h w -> b c (h w)')
130
+ w_ = torch.einsum('bij,bjk->bik', q, k)
131
+
132
+ w_ = w_ * (int(c)**(-0.5))
133
+ w_ = torch.nn.functional.softmax(w_, dim=2)
134
+
135
+ # attend to values
136
+ v = rearrange(v, 'b c h w -> b c (h w)')
137
+ w_ = rearrange(w_, 'b i j -> b j i')
138
+ h_ = torch.einsum('bij,bjk->bik', v, w_)
139
+ h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
140
+ h_ = self.proj_out(h_)
141
+
142
+ return x+h_
143
+
144
+
145
+ class CrossAttention(nn.Module):
146
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
147
+ super().__init__()
148
+ inner_dim = dim_head * heads
149
+ context_dim = default(context_dim, query_dim)
150
+
151
+ self.scale = dim_head ** -0.5
152
+ self.heads = heads
153
+
154
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
155
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
156
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
157
+
158
+ self.to_out = nn.Sequential(
159
+ nn.Linear(inner_dim, query_dim),
160
+ nn.Dropout(dropout)
161
+ )
162
+ self.attention_probs=None
163
+
164
+ def forward(self, x, context=None, mask=None):
165
+ h = self.heads
166
+
167
+ q = self.to_q(x)
168
+ context = default(context, x)
169
+ k = self.to_k(context)
170
+ v = self.to_v(context)
171
+
172
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
173
+
174
+ # force cast to fp32 to avoid overflowing
175
+ if _ATTN_PRECISION =="fp32":
176
+ with torch.autocast(enabled=False, device_type = 'cuda'):
177
+ q, k = q.float(), k.float()
178
+ sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
179
+ else:
180
+ sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
181
+
182
+ del q, k
183
+
184
+ if exists(mask):
185
+ mask = rearrange(mask, 'b ... -> b (...)')
186
+ max_neg_value = -torch.finfo(sim.dtype).max
187
+ mask = repeat(mask, 'b j -> (b h) () j', h=h)
188
+ sim.masked_fill_(~mask, max_neg_value)
189
+
190
+ # attention, what we cannot get enough of
191
+ sim = sim.softmax(dim=-1)
192
+ self.attention_probs = sim
193
+ #print("similarity",sim.shape)
194
+ out = einsum('b i j, b j d -> b i d', sim, v)
195
+ out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
196
+ return self.to_out(out)
197
+
198
+
199
+ class MemoryEfficientCrossAttention(nn.Module):
200
+ # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
201
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
202
+ super().__init__()
203
+ print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
204
+ f"{heads} heads.")
205
+ inner_dim = dim_head * heads
206
+ context_dim = default(context_dim, query_dim)
207
+
208
+ self.heads = heads
209
+ self.dim_head = dim_head
210
+
211
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
212
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
213
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
214
+
215
+ self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
216
+ self.attention_op: Optional[Any] = None
217
+ self.attention_probs=None
218
+
219
+ def forward(self, x, context=None, mask=None):#,timestep=None):
220
+ h = self.heads
221
+ q = self.to_q(x)
222
+ context = default(context, x)
223
+ k = self.to_k(context)
224
+ v = self.to_v(context)
225
+
226
+
227
+ b, _, _ = q.shape
228
+ q, k, v = map(
229
+ lambda t: t.unsqueeze(3)
230
+ .reshape(b, t.shape[1], self.heads, self.dim_head)
231
+ .permute(0, 2, 1, 3)
232
+ .reshape(b * self.heads, t.shape[1], self.dim_head)
233
+ .contiguous(),
234
+ (q, k, v),
235
+ )
236
+
237
+ # actually compute the attention, what we cannot get enough of
238
+ out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
239
+
240
+ if exists(mask):
241
+ raise NotImplementedError
242
+ out = (
243
+ out.unsqueeze(0)
244
+ .reshape(b, self.heads, out.shape[1], self.dim_head)
245
+ .permute(0, 2, 1, 3)
246
+ .reshape(b, out.shape[1], self.heads * self.dim_head)
247
+ )
248
+ prob=rearrange(out, 'b n (h d) -> (b h) n d', h=h)
249
+ prob = einsum('b i d, b j d -> b i j', prob, v)
250
+ self.attention_probs = prob
251
+
252
+ # print("emb",emb)
253
+ # print(timestep)
254
+ # if prob.shape[1] ==6144 and prob.shape[2]==6144 and timestep!=None and timestep<100: #and emb==0:
255
+ # torch.save(q,"./q1.pt")
256
+ # torch.save(k,"./k1.pt")
257
+ # torch.save(prob,"./prob.pt")
258
+ # print(prob.shape)
259
+ return self.to_out(out)
260
+
261
+
262
+ class BasicTransformerBlock(nn.Module):
263
+ ATTENTION_MODES = {
264
+ "softmax": CrossAttention, # vanilla attention
265
+ "softmax-xformers": MemoryEfficientCrossAttention
266
+ }
267
+ def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
268
+ disable_self_attn=False):
269
+ super().__init__()
270
+ attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
271
+ assert attn_mode in self.ATTENTION_MODES
272
+ attn_cls = self.ATTENTION_MODES[attn_mode]
273
+ self.disable_self_attn = disable_self_attn
274
+ self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
275
+ context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
276
+ self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
277
+ self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim,
278
+ heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
279
+ self.norm1 = nn.LayerNorm(dim)
280
+ self.norm2 = nn.LayerNorm(dim)
281
+ self.norm3 = nn.LayerNorm(dim)
282
+ self.checkpoint = checkpoint
283
+
284
+ def forward(self, x, context=None):#, timestep=None):
285
+ return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
286
+
287
+ def _forward(self, x, context=None):#, timestep=None):
288
+ x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
289
+ x = self.attn2(self.norm2(x), context=context) + x
290
+ x = self.ff(self.norm3(x)) + x
291
+ return x
292
+
293
+ def _trunc_normal_(tensor, mean, std, a, b):
294
+ # Cut & paste from PyTorch official master until it's in a few official releases - RW
295
+ # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
296
+ def norm_cdf(x):
297
+ # Computes standard normal cumulative distribution function
298
+ return (1. + math.erf(x / math.sqrt(2.))) / 2.
299
+
300
+ if (mean < a - 2 * std) or (mean > b + 2 * std):
301
+ warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
302
+ "The distribution of values may be incorrect.",
303
+ stacklevel=2)
304
+
305
+ # Values are generated by using a truncated uniform distribution and
306
+ # then using the inverse CDF for the normal distribution.
307
+ # Get upper and lower cdf values
308
+ l = norm_cdf((a - mean) / std)
309
+ u = norm_cdf((b - mean) / std)
310
+
311
+ # Uniformly fill tensor with values from [l, u], then translate to
312
+ # [2l-1, 2u-1].
313
+ tensor.uniform_(2 * l - 1, 2 * u - 1)
314
+
315
+ # Use inverse cdf transform for normal distribution to get truncated
316
+ # standard normal
317
+ tensor.erfinv_()
318
+
319
+ # Transform to proper mean, std
320
+ tensor.mul_(std * math.sqrt(2.))
321
+ tensor.add_(mean)
322
+
323
+ # Clamp to ensure it's in the proper range
324
+ tensor.clamp_(min=a, max=b)
325
+ return tensor
326
+
327
+
328
+ def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
329
+ # type: (Tensor, float, float, float, float) -> Tensor
330
+ r"""Fills the input Tensor with values drawn from a truncated
331
+ normal distribution. The values are effectively drawn from the
332
+ normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
333
+ with values outside :math:`[a, b]` redrawn until they are within
334
+ the bounds. The method used for generating the random values works
335
+ best when :math:`a \leq \text{mean} \leq b`.
336
+
337
+ NOTE: this impl is similar to the PyTorch trunc_normal_, the bounds [a, b] are
338
+ applied while sampling the normal with mean/std applied, therefore a, b args
339
+ should be adjusted to match the range of mean, std args.
340
+
341
+ Args:
342
+ tensor: an n-dimensional `torch.Tensor`
343
+ mean: the mean of the normal distribution
344
+ std: the standard deviation of the normal distribution
345
+ a: the minimum cutoff value
346
+ b: the maximum cutoff value
347
+ Examples:
348
+ >>> w = torch.empty(3, 5)
349
+ >>> nn.init.trunc_normal_(w)
350
+ """
351
+ with torch.no_grad():
352
+ return _trunc_normal_(tensor, mean, std, a, b)
353
+
354
+ class PostionalAttention(nn.Module):
355
+ def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
356
+ proj_drop=0., attn_head_dim=None, use_rpb=False, window_size=14):
357
+ super().__init__()
358
+ self.num_heads = num_heads
359
+ head_dim = dim // num_heads
360
+ if attn_head_dim is not None:
361
+ head_dim = attn_head_dim
362
+ all_head_dim = head_dim * self.num_heads
363
+ self.scale = qk_scale or head_dim ** -0.5
364
+
365
+ self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
366
+ if qkv_bias:
367
+ self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
368
+ self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
369
+ else:
370
+ self.q_bias = None
371
+ self.v_bias = None
372
+
373
+ # relative positional bias option
374
+ self.use_rpb = use_rpb
375
+ if use_rpb:
376
+ self.window_size = window_size
377
+ self.rpb_table = nn.Parameter(torch.zeros((2 * window_size - 1) * (2 * window_size - 1), num_heads))
378
+ trunc_normal_(self.rpb_table, std=.02)
379
+
380
+ coords_h = torch.arange(window_size)
381
+ coords_w = torch.arange(window_size)
382
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, h, w
383
+ coords_flatten = torch.flatten(coords, 1) # 2, h*w
384
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, h*w, h*w
385
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # h*w, h*w, 2
386
+ relative_coords[:, :, 0] += window_size - 1 # shift to start from 0
387
+ relative_coords[:, :, 1] += window_size - 1
388
+ relative_coords[:, :, 0] *= 2 * window_size - 1
389
+ relative_position_index = relative_coords.sum(-1) # h*w, h*w
390
+ self.register_buffer("relative_position_index", relative_position_index)
391
+
392
+ self.attn_drop = nn.Dropout(attn_drop)
393
+ self.proj = nn.Linear(all_head_dim, dim)
394
+ self.proj_drop = nn.Dropout(proj_drop)
395
+
396
+ def forward(self, x):
397
+ B, N, C = x.shape
398
+ qkv_bias = None
399
+ if self.q_bias is not None:
400
+ qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
401
+ # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
402
+ qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
403
+ qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
404
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
405
+
406
+ q = q * self.scale
407
+ attn = (q @ k.transpose(-2, -1))
408
+
409
+ if self.use_rpb:
410
+ relative_position_bias = self.rpb_table[self.relative_position_index.view(-1)].view(
411
+ self.window_size * self.window_size, self.window_size * self.window_size, -1) # h*w,h*w,nH
412
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, h*w, h*w
413
+ attn += relative_position_bias
414
+
415
+ attn = attn.softmax(dim=-1)
416
+ attn = self.attn_drop(attn)
417
+
418
+ x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
419
+ x = self.proj(x)
420
+ x = self.proj_drop(x)
421
+ return x
422
+
423
+
424
+
425
+ class Mlp(nn.Module):
426
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
427
+ super().__init__()
428
+ out_features = out_features or in_features
429
+ hidden_features = hidden_features or in_features
430
+ self.fc1 = nn.Linear(in_features, hidden_features)
431
+ self.act = act_layer()
432
+ self.fc2 = nn.Linear(hidden_features, out_features)
433
+ self.drop = nn.Dropout(drop)
434
+
435
+ def forward(self, x):
436
+ x = self.fc1(x)
437
+ x = self.act(x)
438
+ # x = self.drop(x)
439
+ # commit this for the orignal BERT implement
440
+ x = self.fc2(x)
441
+ x = self.drop(x)
442
+ return x
443
+
444
+ class Block(nn.Module):
445
+
446
+ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
447
+ drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
448
+ attn_head_dim=None, use_rpb=False, window_size=14):
449
+ super().__init__()
450
+ self.norm1 = norm_layer(dim)
451
+ self.attn = PostionalAttention(
452
+ dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
453
+ attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim,
454
+ use_rpb=use_rpb, window_size=window_size)
455
+ # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
456
+ self.drop_path = nn.Identity() #DropPath(drop_path) if drop_path > 0. else nn.Identity()
457
+ self.norm2 = norm_layer(dim)
458
+ mlp_hidden_dim = int(dim * mlp_ratio)
459
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
460
+
461
+ if init_values > 0:
462
+ self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
463
+ self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
464
+ else:
465
+ self.gamma_1, self.gamma_2 = None, None
466
+
467
+ def forward(self, x):
468
+ if self.gamma_1 is None:
469
+ x = x + self.drop_path(self.attn(self.norm1(x)))
470
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
471
+ else:
472
+ x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
473
+ x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
474
+ return x
475
+
476
+ class PatchEmbed(nn.Module):
477
+ """ Image to Patch Embedding
478
+ """
479
+
480
+ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, mask_cent=False):
481
+ super().__init__()
482
+ # to_2tuple = _ntuple(2)
483
+ # img_size = to_2tuple(img_size)
484
+ # patch_size = to_2tuple(patch_size)
485
+ img_size = tuple((img_size, img_size))
486
+ patch_size = tuple((patch_size,patch_size))
487
+ num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
488
+ self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
489
+ self.img_size = img_size
490
+ self.patch_size = patch_size
491
+ self.num_patches = num_patches
492
+ self.mask_cent = mask_cent
493
+
494
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
495
+
496
+ # # From PyTorch internals
497
+ # def _ntuple(n):
498
+ # def parse(x):
499
+ # if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
500
+ # return tuple(x)
501
+ # return tuple(repeat(x, n))
502
+ # return parse
503
+
504
+ def forward(self, x, **kwargs):
505
+ B, C, H, W = x.shape
506
+ # FIXME look at relaxing size constraints
507
+ assert H == self.img_size[0] and W == self.img_size[1], \
508
+ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
509
+ if self.mask_cent:
510
+ x[:, -1] = x[:, -1] - 0.5
511
+ x = self.proj(x).flatten(2).transpose(1, 2)
512
+ return x
513
+
514
+ class CnnHead(nn.Module):
515
+ def __init__(self, embed_dim, num_classes, window_size):
516
+ super().__init__()
517
+ self.embed_dim = embed_dim
518
+ self.num_classes = num_classes
519
+ self.window_size = window_size
520
+
521
+ self.head = nn.Conv2d(embed_dim, num_classes, kernel_size=3, stride=1, padding=1, padding_mode='reflect')
522
+
523
+ def forward(self, x):
524
+ x = rearrange(x, 'b (p1 p2) c -> b c p1 p2', p1=self.window_size, p2=self.window_size)
525
+ x = self.head(x)
526
+ x = rearrange(x, 'b c p1 p2 -> b (p1 p2) c')
527
+ return x
528
+
529
+ # sin-cos position encoding
530
+ # https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31
531
+
532
+ import numpy as np
533
+ def get_sinusoid_encoding_table(n_position, d_hid):
534
+ ''' Sinusoid position encoding table '''
535
+ # TODO: make it with torch instead of numpy
536
+ def get_position_angle_vec(position):
537
+ return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
538
+
539
+ sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
540
+ sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
541
+ sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
542
+
543
+ return torch.FloatTensor(sinusoid_table).unsqueeze(0)
544
+
545
+ class SpatialTransformer(nn.Module):
546
+ """
547
+ Transformer block for image-like data.
548
+ First, project the input (aka embedding)
549
+ and reshape to b, t, d.
550
+ Then apply standard transformer action.
551
+ Finally, reshape to image
552
+ NEW: use_linear for more efficiency instead of the 1x1 convs
553
+ """
554
+ def __init__(self, in_channels, n_heads, d_head,
555
+ depth=1, dropout=0., context_dim=None,
556
+ disable_self_attn=False, use_linear=False,
557
+ use_checkpoint=True):
558
+ super().__init__()
559
+ if exists(context_dim) and not isinstance(context_dim, list):
560
+ context_dim = [context_dim]
561
+ self.in_channels = in_channels
562
+ inner_dim = n_heads * d_head
563
+ self.norm = Normalize(in_channels)
564
+ if not use_linear:
565
+ self.proj_in = nn.Conv2d(in_channels,
566
+ inner_dim,
567
+ kernel_size=1,
568
+ stride=1,
569
+ padding=0)
570
+ else:
571
+ self.proj_in = nn.Linear(in_channels, inner_dim)
572
+
573
+ self.transformer_blocks = nn.ModuleList(
574
+ [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
575
+ disable_self_attn=disable_self_attn, checkpoint=use_checkpoint)
576
+ for d in range(depth)]
577
+ )
578
+ if not use_linear:
579
+ self.proj_out = zero_module(nn.Conv2d(inner_dim,
580
+ in_channels,
581
+ kernel_size=1,
582
+ stride=1,
583
+ padding=0))
584
+ else:
585
+ self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
586
+ self.use_linear = use_linear
587
+ self.map_size = None
588
+ # self.cnnhead = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1, padding_mode='reflect')
589
+
590
+ # embed_dim=192
591
+ # img_size=64
592
+ # patch_size=8
593
+ # self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size,
594
+ # in_chans=4, embed_dim=embed_dim, mask_cent=False)
595
+ # num_patches = self.patch_embed.num_patches # 2
596
+
597
+ # self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim)
598
+
599
+ # self.cnnhead = CnnHead(embed_dim, num_classes=32, window_size=img_size // patch_size)
600
+
601
+ # self.posatnn_block = Block(dim=embed_dim, num_heads=3, mlp_ratio=4., qkv_bias=True, qk_scale=None,
602
+ # drop=0., attn_drop=0., norm_layer=nn.LayerNorm,
603
+ # init_values=0., use_rpb=True, window_size=img_size // patch_size)
604
+ # # self.window_size=8
605
+ # self.norm1=nn.LayerNorm(embed_dim)
606
+
607
+ def forward(self, x, context=None):#,timestep=None):
608
+ # note: if no context is given, cross-attention defaults to self-attention
609
+ if not isinstance(context, list):
610
+ context = [context]
611
+ b, c, h, w = x.shape
612
+ x_in = x
613
+ x = self.norm(x)
614
+ if not self.use_linear:
615
+ x = self.proj_in(x)
616
+ x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
617
+ if self.use_linear:
618
+ x = self.proj_in(x)
619
+ for i, block in enumerate(self.transformer_blocks):
620
+ x = block(x, context=context[i])#,timestep=timestep)
621
+ if self.use_linear:
622
+ x = self.proj_out(x)
623
+
624
+ # x = rearrange(x, 'b (p1 p2) c -> b c p1 p2', p1=self.window_size, p2=self.window_size)
625
+ # x = self.cnnhead(x)
626
+ # x = rearrange(x, 'b c p1 p2 -> b (p1 p2) c')
627
+
628
+ # x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
629
+ x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
630
+ # print("before",x.shape)
631
+
632
+ # if x.shape[1]==4:
633
+ # x = self.patch_embed(x)
634
+ # print("after PatchEmbed",x.shape)
635
+ # x = x + self.pos_embed.type_as(x).to(x.device).clone().detach()
636
+
637
+ # x =self.posatnn_block(x)
638
+ # x = self.norm1(x)
639
+ # print("after norm",x.shape)
640
+
641
+ # x = self.cnnhead(x)
642
+
643
+ # print("after",x.shape)
644
+ if not self.use_linear:
645
+ x = self.proj_out(x)
646
+
647
+
648
+ self.map_size = x.shape[-2:]
649
+ return x + x_in
650
+
651
+ # res = self.cnnhead(x+x_in)
652
+ # return res
653
+
Control-Color/ldm/modules/attention_dcn_control.py ADDED
@@ -0,0 +1,854 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from inspect import isfunction
2
+ import math
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from torch import nn, einsum
6
+ from einops import rearrange, repeat
7
+ from typing import Optional, Any
8
+
9
+ from ldm.modules.diffusionmodules.util import checkpoint
10
+
11
+ import torchvision
12
+ from torch.nn.modules.utils import _pair, _single
13
+
14
+ try:
15
+ import xformers
16
+ import xformers.ops
17
+ XFORMERS_IS_AVAILBLE = True
18
+ except:
19
+ XFORMERS_IS_AVAILBLE = False
20
+
21
+ # CrossAttn precision handling
22
+ import os
23
+ _ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
24
+
25
+ def exists(val):
26
+ return val is not None
27
+
28
+
29
+ def uniq(arr):
30
+ return{el: True for el in arr}.keys()
31
+
32
+
33
+ def default(val, d):
34
+ if exists(val):
35
+ return val
36
+ return d() if isfunction(d) else d
37
+
38
+
39
+ def max_neg_value(t):
40
+ return -torch.finfo(t.dtype).max
41
+
42
+
43
+ def init_(tensor):
44
+ dim = tensor.shape[-1]
45
+ std = 1 / math.sqrt(dim)
46
+ tensor.uniform_(-std, std)
47
+ return tensor
48
+
49
+
50
+ # feedforward
51
+ class GEGLU(nn.Module):
52
+ def __init__(self, dim_in, dim_out):
53
+ super().__init__()
54
+ self.proj = nn.Linear(dim_in, dim_out * 2)
55
+
56
+ def forward(self, x):
57
+ x, gate = self.proj(x).chunk(2, dim=-1)
58
+ return x * F.gelu(gate)
59
+
60
+
61
+ class FeedForward(nn.Module):
62
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
63
+ super().__init__()
64
+ inner_dim = int(dim * mult)
65
+ dim_out = default(dim_out, dim)
66
+ project_in = nn.Sequential(
67
+ nn.Linear(dim, inner_dim),
68
+ nn.GELU()
69
+ ) if not glu else GEGLU(dim, inner_dim)
70
+
71
+ self.net = nn.Sequential(
72
+ project_in,
73
+ nn.Dropout(dropout),
74
+ nn.Linear(inner_dim, dim_out)
75
+ )
76
+
77
+ def forward(self, x):
78
+ return self.net(x)
79
+
80
+
81
+ def zero_module(module):
82
+ """
83
+ Zero out the parameters of a module and return it.
84
+ """
85
+ for p in module.parameters():
86
+ p.detach().zero_()
87
+ return module
88
+
89
+
90
+ def Normalize(in_channels):
91
+ return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
92
+
93
+
94
+ class SpatialSelfAttention(nn.Module):
95
+ def __init__(self, in_channels):
96
+ super().__init__()
97
+ self.in_channels = in_channels
98
+
99
+ self.norm = Normalize(in_channels)
100
+ self.q = torch.nn.Conv2d(in_channels,
101
+ in_channels,
102
+ kernel_size=1,
103
+ stride=1,
104
+ padding=0)
105
+ self.k = torch.nn.Conv2d(in_channels,
106
+ in_channels,
107
+ kernel_size=1,
108
+ stride=1,
109
+ padding=0)
110
+ self.v = torch.nn.Conv2d(in_channels,
111
+ in_channels,
112
+ kernel_size=1,
113
+ stride=1,
114
+ padding=0)
115
+ self.proj_out = torch.nn.Conv2d(in_channels,
116
+ in_channels,
117
+ kernel_size=1,
118
+ stride=1,
119
+ padding=0)
120
+
121
+ def forward(self, x):
122
+ h_ = x
123
+ h_ = self.norm(h_)
124
+ q = self.q(h_)
125
+ k = self.k(h_)
126
+ v = self.v(h_)
127
+
128
+ # compute attention
129
+ b,c,h,w = q.shape
130
+ q = rearrange(q, 'b c h w -> b (h w) c')
131
+ k = rearrange(k, 'b c h w -> b c (h w)')
132
+ w_ = torch.einsum('bij,bjk->bik', q, k)
133
+
134
+ w_ = w_ * (int(c)**(-0.5))
135
+ w_ = torch.nn.functional.softmax(w_, dim=2)
136
+
137
+ # attend to values
138
+ v = rearrange(v, 'b c h w -> b c (h w)')
139
+ w_ = rearrange(w_, 'b i j -> b j i')
140
+ h_ = torch.einsum('bij,bjk->bik', v, w_)
141
+ h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
142
+ h_ = self.proj_out(h_)
143
+
144
+ return x+h_
145
+
146
+
147
+ class CrossAttention(nn.Module):
148
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
149
+ super().__init__()
150
+ inner_dim = dim_head * heads
151
+ context_dim = default(context_dim, query_dim)
152
+
153
+ self.scale = dim_head ** -0.5
154
+ self.heads = heads
155
+
156
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
157
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
158
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
159
+
160
+ self.to_out = nn.Sequential(
161
+ nn.Linear(inner_dim, query_dim),
162
+ nn.Dropout(dropout)
163
+ )
164
+
165
+ def forward(self, x, context=None, mask=None):
166
+ h = self.heads
167
+
168
+ q = self.to_q(x)
169
+ context = default(context, x)
170
+ k = self.to_k(context)
171
+ v = self.to_v(context)
172
+
173
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
174
+
175
+ # force cast to fp32 to avoid overflowing
176
+ if _ATTN_PRECISION =="fp32":
177
+ with torch.autocast(enabled=False, device_type = 'cuda'):
178
+ q, k = q.float(), k.float()
179
+ sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
180
+ else:
181
+ sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
182
+
183
+ del q, k
184
+
185
+ if exists(mask):
186
+ mask = rearrange(mask, 'b ... -> b (...)')
187
+ max_neg_value = -torch.finfo(sim.dtype).max
188
+ mask = repeat(mask, 'b j -> (b h) () j', h=h)
189
+ sim.masked_fill_(~mask, max_neg_value)
190
+
191
+ # attention, what we cannot get enough of
192
+ sim = sim.softmax(dim=-1)
193
+
194
+ out = einsum('b i j, b j d -> b i d', sim, v)
195
+ out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
196
+ return self.to_out(out)
197
+
198
+
199
+ class MemoryEfficientCrossAttention(nn.Module):
200
+ # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
201
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
202
+ super().__init__()
203
+ print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
204
+ f"{heads} heads.")
205
+ inner_dim = dim_head * heads
206
+ context_dim = default(context_dim, query_dim)
207
+
208
+ self.heads = heads
209
+ self.dim_head = dim_head
210
+
211
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
212
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
213
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
214
+
215
+ self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
216
+ self.attention_op: Optional[Any] = None
217
+
218
+ def forward(self, x, context=None, mask=None):
219
+ q = self.to_q(x)
220
+ context = default(context, x)
221
+ k = self.to_k(context)
222
+ v = self.to_v(context)
223
+
224
+ b, _, _ = q.shape
225
+ q, k, v = map(
226
+ lambda t: t.unsqueeze(3)
227
+ .reshape(b, t.shape[1], self.heads, self.dim_head)
228
+ .permute(0, 2, 1, 3)
229
+ .reshape(b * self.heads, t.shape[1], self.dim_head)
230
+ .contiguous(),
231
+ (q, k, v),
232
+ )
233
+
234
+ # actually compute the attention, what we cannot get enough of
235
+ out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
236
+
237
+ if exists(mask):
238
+ raise NotImplementedError
239
+ out = (
240
+ out.unsqueeze(0)
241
+ .reshape(b, self.heads, out.shape[1], self.dim_head)
242
+ .permute(0, 2, 1, 3)
243
+ .reshape(b, out.shape[1], self.heads * self.dim_head)
244
+ )
245
+ return self.to_out(out)
246
+
247
+
248
+ class BasicTransformerBlock(nn.Module):
249
+ ATTENTION_MODES = {
250
+ "softmax": CrossAttention, # vanilla attention
251
+ "softmax-xformers": MemoryEfficientCrossAttention
252
+ }
253
+ def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
254
+ disable_self_attn=False):
255
+ super().__init__()
256
+ attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
257
+ assert attn_mode in self.ATTENTION_MODES
258
+ attn_cls = self.ATTENTION_MODES[attn_mode]
259
+ self.disable_self_attn = disable_self_attn
260
+ self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
261
+ context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
262
+ self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
263
+ self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim,
264
+ heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
265
+ self.norm1 = nn.LayerNorm(dim)
266
+ self.norm2 = nn.LayerNorm(dim)
267
+ self.norm3 = nn.LayerNorm(dim)
268
+ self.checkpoint = checkpoint
269
+
270
+ def forward(self, x, context=None):
271
+ return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
272
+
273
+ def _forward(self, x, context=None):
274
+ x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
275
+ x = self.attn2(self.norm2(x), context=context) + x
276
+ x = self.ff(self.norm3(x)) + x
277
+ return x
278
+
279
+ def _trunc_normal_(tensor, mean, std, a, b):
280
+ # Cut & paste from PyTorch official master until it's in a few official releases - RW
281
+ # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
282
+ def norm_cdf(x):
283
+ # Computes standard normal cumulative distribution function
284
+ return (1. + math.erf(x / math.sqrt(2.))) / 2.
285
+
286
+ if (mean < a - 2 * std) or (mean > b + 2 * std):
287
+ warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
288
+ "The distribution of values may be incorrect.",
289
+ stacklevel=2)
290
+
291
+ # Values are generated by using a truncated uniform distribution and
292
+ # then using the inverse CDF for the normal distribution.
293
+ # Get upper and lower cdf values
294
+ l = norm_cdf((a - mean) / std)
295
+ u = norm_cdf((b - mean) / std)
296
+
297
+ # Uniformly fill tensor with values from [l, u], then translate to
298
+ # [2l-1, 2u-1].
299
+ tensor.uniform_(2 * l - 1, 2 * u - 1)
300
+
301
+ # Use inverse cdf transform for normal distribution to get truncated
302
+ # standard normal
303
+ tensor.erfinv_()
304
+
305
+ # Transform to proper mean, std
306
+ tensor.mul_(std * math.sqrt(2.))
307
+ tensor.add_(mean)
308
+
309
+ # Clamp to ensure it's in the proper range
310
+ tensor.clamp_(min=a, max=b)
311
+ return tensor
312
+
313
+
314
+ def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
315
+ # type: (Tensor, float, float, float, float) -> Tensor
316
+ r"""Fills the input Tensor with values drawn from a truncated
317
+ normal distribution. The values are effectively drawn from the
318
+ normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
319
+ with values outside :math:`[a, b]` redrawn until they are within
320
+ the bounds. The method used for generating the random values works
321
+ best when :math:`a \leq \text{mean} \leq b`.
322
+
323
+ NOTE: this impl is similar to the PyTorch trunc_normal_, the bounds [a, b] are
324
+ applied while sampling the normal with mean/std applied, therefore a, b args
325
+ should be adjusted to match the range of mean, std args.
326
+
327
+ Args:
328
+ tensor: an n-dimensional `torch.Tensor`
329
+ mean: the mean of the normal distribution
330
+ std: the standard deviation of the normal distribution
331
+ a: the minimum cutoff value
332
+ b: the maximum cutoff value
333
+ Examples:
334
+ >>> w = torch.empty(3, 5)
335
+ >>> nn.init.trunc_normal_(w)
336
+ """
337
+ with torch.no_grad():
338
+ return _trunc_normal_(tensor, mean, std, a, b)
339
+
340
+ class PostionalAttention(nn.Module):
341
+ def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
342
+ proj_drop=0., attn_head_dim=None, use_rpb=False, window_size=14):
343
+ super().__init__()
344
+ self.num_heads = num_heads
345
+ head_dim = dim // num_heads
346
+ if attn_head_dim is not None:
347
+ head_dim = attn_head_dim
348
+ all_head_dim = head_dim * self.num_heads
349
+ self.scale = qk_scale or head_dim ** -0.5
350
+
351
+ self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
352
+ if qkv_bias:
353
+ self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
354
+ self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
355
+ else:
356
+ self.q_bias = None
357
+ self.v_bias = None
358
+
359
+ # relative positional bias option
360
+ self.use_rpb = use_rpb
361
+ if use_rpb:
362
+ self.window_size = window_size
363
+ self.rpb_table = nn.Parameter(torch.zeros((2 * window_size - 1) * (2 * window_size - 1), num_heads))
364
+ trunc_normal_(self.rpb_table, std=.02)
365
+
366
+ coords_h = torch.arange(window_size)
367
+ coords_w = torch.arange(window_size)
368
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, h, w
369
+ coords_flatten = torch.flatten(coords, 1) # 2, h*w
370
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, h*w, h*w
371
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # h*w, h*w, 2
372
+ relative_coords[:, :, 0] += window_size - 1 # shift to start from 0
373
+ relative_coords[:, :, 1] += window_size - 1
374
+ relative_coords[:, :, 0] *= 2 * window_size - 1
375
+ relative_position_index = relative_coords.sum(-1) # h*w, h*w
376
+ self.register_buffer("relative_position_index", relative_position_index)
377
+
378
+ self.attn_drop = nn.Dropout(attn_drop)
379
+ self.proj = nn.Linear(all_head_dim, dim)
380
+ self.proj_drop = nn.Dropout(proj_drop)
381
+
382
+ def forward(self, x):
383
+ B, N, C = x.shape
384
+ qkv_bias = None
385
+ if self.q_bias is not None:
386
+ qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
387
+ # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
388
+ qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
389
+ qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
390
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
391
+
392
+ q = q * self.scale
393
+ attn = (q @ k.transpose(-2, -1))
394
+
395
+ if self.use_rpb:
396
+ relative_position_bias = self.rpb_table[self.relative_position_index.view(-1)].view(
397
+ self.window_size * self.window_size, self.window_size * self.window_size, -1) # h*w,h*w,nH
398
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, h*w, h*w
399
+ attn += relative_position_bias
400
+
401
+ attn = attn.softmax(dim=-1)
402
+ attn = self.attn_drop(attn)
403
+
404
+ x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
405
+ x = self.proj(x)
406
+ x = self.proj_drop(x)
407
+ return x
408
+
409
+
410
+
411
+ class Mlp(nn.Module):
412
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
413
+ super().__init__()
414
+ out_features = out_features or in_features
415
+ hidden_features = hidden_features or in_features
416
+ self.fc1 = nn.Linear(in_features, hidden_features)
417
+ self.act = act_layer()
418
+ self.fc2 = nn.Linear(hidden_features, out_features)
419
+ self.drop = nn.Dropout(drop)
420
+
421
+ def forward(self, x):
422
+ x = self.fc1(x)
423
+ x = self.act(x)
424
+ # x = self.drop(x)
425
+ # commit this for the orignal BERT implement
426
+ x = self.fc2(x)
427
+ x = self.drop(x)
428
+ return x
429
+
430
+ class Block(nn.Module):
431
+
432
+ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
433
+ drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
434
+ attn_head_dim=None, use_rpb=False, window_size=14):
435
+ super().__init__()
436
+ self.norm1 = norm_layer(dim)
437
+ self.attn = PostionalAttention(
438
+ dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
439
+ attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim,
440
+ use_rpb=use_rpb, window_size=window_size)
441
+ # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
442
+ self.drop_path = nn.Identity() #DropPath(drop_path) if drop_path > 0. else nn.Identity()
443
+ self.norm2 = norm_layer(dim)
444
+ mlp_hidden_dim = int(dim * mlp_ratio)
445
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
446
+
447
+ if init_values > 0:
448
+ self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
449
+ self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
450
+ else:
451
+ self.gamma_1, self.gamma_2 = None, None
452
+
453
+ def forward(self, x):
454
+ if self.gamma_1 is None:
455
+ x = x + self.drop_path(self.attn(self.norm1(x)))
456
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
457
+ else:
458
+ x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
459
+ x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
460
+ return x
461
+
462
+ class PatchEmbed(nn.Module):
463
+ """ Image to Patch Embedding
464
+ """
465
+
466
+ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, mask_cent=False):
467
+ super().__init__()
468
+ # to_2tuple = _ntuple(2)
469
+ # img_size = to_2tuple(img_size)
470
+ # patch_size = to_2tuple(patch_size)
471
+ img_size = tuple((img_size, img_size))
472
+ patch_size = tuple((patch_size,patch_size))
473
+ num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
474
+ self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
475
+ self.img_size = img_size
476
+ self.patch_size = patch_size
477
+ self.num_patches = num_patches
478
+ self.mask_cent = mask_cent
479
+
480
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
481
+
482
+ # # From PyTorch internals
483
+ # def _ntuple(n):
484
+ # def parse(x):
485
+ # if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
486
+ # return tuple(x)
487
+ # return tuple(repeat(x, n))
488
+ # return parse
489
+
490
+ def forward(self, x, **kwargs):
491
+ B, C, H, W = x.shape
492
+ # FIXME look at relaxing size constraints
493
+ assert H == self.img_size[0] and W == self.img_size[1], \
494
+ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
495
+ if self.mask_cent:
496
+ x[:, -1] = x[:, -1] - 0.5
497
+ x = self.proj(x).flatten(2).transpose(1, 2)
498
+ return x
499
+
500
+ class CnnHead(nn.Module):
501
+ def __init__(self, embed_dim, num_classes, window_size):
502
+ super().__init__()
503
+ self.embed_dim = embed_dim
504
+ self.num_classes = num_classes
505
+ self.window_size = window_size
506
+
507
+ self.head = nn.Conv2d(embed_dim, num_classes, kernel_size=3, stride=1, padding=1, padding_mode='reflect')
508
+
509
+ def forward(self, x):
510
+ x = rearrange(x, 'b (p1 p2) c -> b c p1 p2', p1=self.window_size, p2=self.window_size)
511
+ x = self.head(x)
512
+ x = rearrange(x, 'b c p1 p2 -> b (p1 p2) c')
513
+ return x
514
+
515
+ # sin-cos position encoding
516
+ # https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31
517
+
518
+ import numpy as np
519
+ def get_sinusoid_encoding_table(n_position, d_hid):
520
+ ''' Sinusoid position encoding table '''
521
+ # TODO: make it with torch instead of numpy
522
+ def get_position_angle_vec(position):
523
+ return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
524
+
525
+ sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
526
+ sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
527
+ sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
528
+
529
+ return torch.FloatTensor(sinusoid_table).unsqueeze(0)
530
+
531
+ class ModulatedDeformConv(nn.Module):
532
+
533
+ def __init__(self,
534
+ in_channels,
535
+ out_channels,
536
+ kernel_size,
537
+ stride=1,
538
+ padding=0,
539
+ dilation=1,
540
+ groups=1,
541
+ deformable_groups=1,
542
+ bias=True):
543
+ super(ModulatedDeformConv, self).__init__()
544
+ self.in_channels = in_channels
545
+ self.out_channels = out_channels
546
+ self.kernel_size = _pair(kernel_size)
547
+ self.stride = stride
548
+ self.padding = padding
549
+ self.dilation = dilation
550
+ self.groups = groups
551
+ self.deformable_groups = deformable_groups
552
+ self.with_bias = bias
553
+ # enable compatibility with nn.Conv2d
554
+ self.transposed = False
555
+ self.output_padding = _single(0)
556
+
557
+ self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, *self.kernel_size))
558
+ if bias:
559
+ self.bias = nn.Parameter(torch.Tensor(out_channels))
560
+ else:
561
+ self.register_parameter('bias', None)
562
+ self.init_weights()
563
+
564
+ def init_weights(self):
565
+ n = self.in_channels
566
+ for k in self.kernel_size:
567
+ n *= k
568
+ stdv = 1. / math.sqrt(n)
569
+ self.weight.data.uniform_(-stdv, stdv)
570
+ if self.bias is not None:
571
+ self.bias.data.zero_()
572
+
573
+ class ModulatedDeformConvPack(ModulatedDeformConv):
574
+ """
575
+ https://github.com/xinntao/EDVR/blob/master/basicsr/models/ops/dcn/deform_conv.py
576
+ A ModulatedDeformable Conv Encapsulation that acts as normal Conv layers.
577
+
578
+ Args:
579
+ in_channels (int): Same as nn.Conv2d.
580
+ out_channels (int): Same as nn.Conv2d.
581
+ kernel_size (int or tuple[int]): Same as nn.Conv2d.
582
+ stride (int or tuple[int]): Same as nn.Conv2d.
583
+ padding (int or tuple[int]): Same as nn.Conv2d.
584
+ dilation (int or tuple[int]): Same as nn.Conv2d.
585
+ groups (int): Same as nn.Conv2d.
586
+ bias (bool or str): If specified as `auto`, it will be decided by the
587
+ norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
588
+ False.
589
+ """
590
+
591
+ _version = 2
592
+
593
+ def __init__(self, *args, **kwargs):
594
+ super(ModulatedDeformConvPack, self).__init__(*args, **kwargs)
595
+
596
+ self.conv_offset = nn.Conv2d(
597
+ self.in_channels,#self.in_channels+4,
598
+ self.deformable_groups * 3 * self.kernel_size[0] * self.kernel_size[1],
599
+ kernel_size=self.kernel_size,
600
+ stride=_pair(self.stride),
601
+ padding=_pair(self.padding),
602
+ dilation=_pair(self.dilation),
603
+ bias=True)
604
+ self.init_weights()
605
+
606
+ def init_weights(self):
607
+ super(ModulatedDeformConvPack, self).init_weights()
608
+ if hasattr(self, 'conv_offset'):
609
+ self.conv_offset.weight.data.zero_()
610
+ self.conv_offset.bias.data.zero_()
611
+
612
+ def forward(self, x):
613
+ # out = self.conv_offset(torch.cat((x,gray_content),dim=1))
614
+ out = self.conv_offset(x)
615
+ o1, o2, mask = torch.chunk(out, 3, dim=1)
616
+ offset = torch.cat((o1, o2), dim=1)
617
+ mask = torch.sigmoid(mask)
618
+
619
+ # return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation,
620
+ # self.groups, self.deformable_groups)
621
+ return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding,
622
+ self.dilation, mask)
623
+
624
+ class SpatialTransformer(nn.Module):
625
+ """
626
+ Transformer block for image-like data.
627
+ First, project the input (aka embedding)
628
+ and reshape to b, t, d.
629
+ Then apply standard transformer action.
630
+ Finally, reshape to image
631
+ NEW: use_linear for more efficiency instead of the 1x1 convs
632
+ """
633
+ def __init__(self, in_channels, n_heads, d_head,
634
+ depth=1, dropout=0., context_dim=None,
635
+ disable_self_attn=False, use_linear=False,
636
+ use_checkpoint=True):
637
+ super().__init__()
638
+ if exists(context_dim) and not isinstance(context_dim, list):
639
+ context_dim = [context_dim]
640
+ self.in_channels = in_channels
641
+ inner_dim = n_heads * d_head
642
+ self.norm = Normalize(in_channels)
643
+ if not use_linear:
644
+ self.proj_in = nn.Conv2d(in_channels,
645
+ inner_dim,
646
+ kernel_size=1,
647
+ stride=1,
648
+ padding=0)
649
+ else:
650
+ self.proj_in = nn.Linear(in_channels, inner_dim)
651
+
652
+ self.transformer_blocks = nn.ModuleList(
653
+ [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
654
+ disable_self_attn=disable_self_attn, checkpoint=use_checkpoint)
655
+ for d in range(depth)]
656
+ )
657
+ if not use_linear:
658
+ self.proj_out = zero_module(nn.Conv2d(inner_dim,
659
+ in_channels,
660
+ kernel_size=1,
661
+ stride=1,
662
+ padding=0))
663
+ else:
664
+ self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
665
+ self.use_linear = use_linear
666
+ # self.dcn_cnn = ModulatedDeformConvPack(inner_dim,
667
+ # inner_dim,
668
+ # kernel_size=3,
669
+ # stride=1,
670
+ # padding=1)
671
+
672
+ # self.cnnhead = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1, padding_mode='reflect')
673
+
674
+ # embed_dim=192
675
+ # img_size=64
676
+ # patch_size=8
677
+ # self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size,
678
+ # in_chans=4, embed_dim=embed_dim, mask_cent=False)
679
+ # num_patches = self.patch_embed.num_patches # 2
680
+
681
+ # self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim)
682
+
683
+ # self.cnnhead = CnnHead(embed_dim, num_classes=32, window_size=img_size // patch_size)
684
+
685
+ # self.posatnn_block = Block(dim=embed_dim, num_heads=3, mlp_ratio=4., qkv_bias=True, qk_scale=None,
686
+ # drop=0., attn_drop=0., norm_layer=nn.LayerNorm,
687
+ # init_values=0., use_rpb=True, window_size=img_size // patch_size)
688
+ # # self.window_size=8
689
+ # self.norm1=nn.LayerNorm(embed_dim)
690
+
691
+ def forward(self, x, context=None,dcn_guide=None):
692
+ # note: if no context is given, cross-attention defaults to self-attention
693
+ if not isinstance(context, list):
694
+ context = [context]
695
+ b, c, h, w = x.shape
696
+ x_in = x
697
+ x = self.norm(x)
698
+ if not self.use_linear:
699
+ x = self.proj_in(x)
700
+ x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
701
+ if self.use_linear:
702
+ x = self.proj_in(x)
703
+ for i, block in enumerate(self.transformer_blocks):
704
+ x = block(x, context=context[i])
705
+ if self.use_linear:
706
+ x = self.proj_out(x)
707
+
708
+ # x = rearrange(x, 'b (p1 p2) c -> b c p1 p2', p1=self.window_size, p2=self.window_size)
709
+ # x = self.cnnhead(x)
710
+ # x = rearrange(x, 'b c p1 p2 -> b (p1 p2) c')
711
+
712
+ # x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
713
+ x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
714
+ # print("before",x.shape)
715
+
716
+ # if x.shape[1]==4:
717
+ # x = self.patch_embed(x)
718
+ # print("after PatchEmbed",x.shape)
719
+ # x = x + self.pos_embed.type_as(x).to(x.device).clone().detach()
720
+
721
+ # x =self.posatnn_block(x)
722
+ # x = self.norm1(x)
723
+ # print("after norm",x.shape)
724
+
725
+ # x = self.cnnhead(x)
726
+
727
+ # x = self.dcn_cnn(x,dcn_guide) ##
728
+
729
+ # print("after",x.shape)
730
+ if not self.use_linear:
731
+ x = self.proj_out(x)
732
+
733
+
734
+
735
+ return x + x_in
736
+
737
+ # res = self.cnnhead(x+x_in)
738
+ # return res
739
+
740
+
741
+ class SpatialTransformer_dcn(nn.Module):
742
+ """
743
+ Transformer block for image-like data.
744
+ First, project the input (aka embedding)
745
+ and reshape to b, t, d.
746
+ Then apply standard transformer action.
747
+ Finally, reshape to image
748
+ NEW: use_linear for more efficiency instead of the 1x1 convs
749
+ """
750
+ def __init__(self, in_channels, n_heads, d_head,
751
+ depth=1, dropout=0., context_dim=None,
752
+ disable_self_attn=False, use_linear=False,
753
+ use_checkpoint=True):
754
+ super().__init__()
755
+ if exists(context_dim) and not isinstance(context_dim, list):
756
+ context_dim = [context_dim]
757
+ self.in_channels = in_channels
758
+ inner_dim = n_heads * d_head
759
+ self.norm = Normalize(in_channels)
760
+ if not use_linear:
761
+ self.proj_in = nn.Conv2d(in_channels,
762
+ inner_dim,
763
+ kernel_size=1,
764
+ stride=1,
765
+ padding=0)
766
+ else:
767
+ self.proj_in = nn.Linear(in_channels, inner_dim)
768
+
769
+ self.transformer_blocks = nn.ModuleList(
770
+ [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
771
+ disable_self_attn=disable_self_attn, checkpoint=use_checkpoint)
772
+ for d in range(depth)]
773
+ )
774
+ if not use_linear:
775
+ self.proj_out = zero_module(nn.Conv2d(inner_dim,
776
+ in_channels,
777
+ kernel_size=1,
778
+ stride=1,
779
+ padding=0))
780
+ else:
781
+ self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
782
+ self.use_linear = use_linear
783
+ # print(in_channels,inner_dim)
784
+ self.dcn_cnn = ModulatedDeformConvPack(inner_dim,
785
+ inner_dim,
786
+ kernel_size=3,
787
+ stride=1,
788
+ padding=1)
789
+
790
+ # self.cnnhead = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1, padding_mode='reflect')
791
+
792
+ # embed_dim=192
793
+ # img_size=64
794
+ # patch_size=8
795
+ # self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size,
796
+ # in_chans=4, embed_dim=embed_dim, mask_cent=False)
797
+ # num_patches = self.patch_embed.num_patches # 2
798
+
799
+ # self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim)
800
+
801
+ # self.cnnhead = CnnHead(embed_dim, num_classes=32, window_size=img_size // patch_size)
802
+
803
+ # self.posatnn_block = Block(dim=embed_dim, num_heads=3, mlp_ratio=4., qkv_bias=True, qk_scale=None,
804
+ # drop=0., attn_drop=0., norm_layer=nn.LayerNorm,
805
+ # init_values=0., use_rpb=True, window_size=img_size // patch_size)
806
+ # # self.window_size=8
807
+ # self.norm1=nn.LayerNorm(embed_dim)
808
+
809
+ def forward(self, x, context=None,dcn_guide=None):
810
+ # note: if no context is given, cross-attention defaults to self-attention
811
+ if not isinstance(context, list):
812
+ context = [context]
813
+ b, c, h, w = x.shape
814
+ x_in = x
815
+ x = self.norm(x)
816
+ if not self.use_linear:
817
+ x = self.proj_in(x)
818
+ x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
819
+ if self.use_linear:
820
+ x = self.proj_in(x)
821
+ for i, block in enumerate(self.transformer_blocks):
822
+ x = block(x, context=context[i])
823
+ if self.use_linear:
824
+ x = self.proj_out(x)
825
+
826
+ # x = rearrange(x, 'b (p1 p2) c -> b c p1 p2', p1=self.window_size, p2=self.window_size)
827
+ # x = self.cnnhead(x)
828
+ # x = rearrange(x, 'b c p1 p2 -> b (p1 p2) c')
829
+
830
+ # x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
831
+ x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
832
+ # print("before",x.shape)
833
+
834
+ # if x.shape[1]==4:
835
+ # x = self.patch_embed(x)
836
+ # print("after PatchEmbed",x.shape)
837
+ # x = x + self.pos_embed.type_as(x).to(x.device).clone().detach()
838
+
839
+ # x =self.posatnn_block(x)
840
+ # x = self.norm1(x)
841
+ # print("after norm",x.shape)
842
+
843
+ # x = self.cnnhead(x)
844
+ x = self.dcn_cnn(x)
845
+ # print("after",x.shape)
846
+ if not self.use_linear:
847
+ x = self.proj_out(x)
848
+
849
+
850
+
851
+ return x + x_in
852
+
853
+ # res = self.cnnhead(x+x_in)
854
+ # return res
Control-Color/ldm/modules/diffusionmodules/__init__.py ADDED
File without changes
Control-Color/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (170 Bytes). View file
 
Control-Color/ldm/modules/diffusionmodules/__pycache__/model.cpython-38.pyc ADDED
Binary file (25.5 kB). View file
 
Control-Color/ldm/modules/diffusionmodules/__pycache__/model_brefore_dcn.cpython-38.pyc ADDED
Binary file (21.3 kB). View file
 
Control-Color/ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-38.pyc ADDED
Binary file (21.6 kB). View file
 
Control-Color/ldm/modules/diffusionmodules/__pycache__/util.cpython-38.pyc ADDED
Binary file (9.67 kB). View file
 
Control-Color/ldm/modules/diffusionmodules/model.py ADDED
@@ -0,0 +1,1107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pytorch_diffusion + derived encoder decoder
2
+ import math
3
+ import torch
4
+ import torch.nn as nn
5
+ import torchvision
6
+ from torch.nn.modules.utils import _pair, _single
7
+ import numpy as np
8
+ from einops import rearrange
9
+ from typing import Optional, Any
10
+
11
+ from ldm.modules.attention import MemoryEfficientCrossAttention
12
+
13
+ try:
14
+ import xformers
15
+ import xformers.ops
16
+ XFORMERS_IS_AVAILBLE = True
17
+ except:
18
+ XFORMERS_IS_AVAILBLE = False
19
+ print("No module 'xformers'. Proceeding without it.")
20
+
21
+
22
+ def get_timestep_embedding(timesteps, embedding_dim):
23
+ """
24
+ This matches the implementation in Denoising Diffusion Probabilistic Models:
25
+ From Fairseq.
26
+ Build sinusoidal embeddings.
27
+ This matches the implementation in tensor2tensor, but differs slightly
28
+ from the description in Section 3.5 of "Attention Is All You Need".
29
+ """
30
+ assert len(timesteps.shape) == 1
31
+
32
+ half_dim = embedding_dim // 2
33
+ emb = math.log(10000) / (half_dim - 1)
34
+ emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
35
+ emb = emb.to(device=timesteps.device)
36
+ emb = timesteps.float()[:, None] * emb[None, :]
37
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
38
+ if embedding_dim % 2 == 1: # zero pad
39
+ emb = torch.nn.functional.pad(emb, (0,1,0,0))
40
+ return emb
41
+
42
+
43
+ def nonlinearity(x):
44
+ # swish
45
+ return x*torch.sigmoid(x)
46
+
47
+
48
+ def Normalize(in_channels, num_groups=32):
49
+ return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
50
+
51
+
52
+ class Upsample(nn.Module):
53
+ def __init__(self, in_channels, with_conv):
54
+ super().__init__()
55
+ self.with_conv = with_conv
56
+ if self.with_conv:
57
+ self.conv = torch.nn.Conv2d(in_channels,
58
+ in_channels,
59
+ kernel_size=3,
60
+ stride=1,
61
+ padding=1)
62
+
63
+ def forward(self, x):
64
+ x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
65
+ if self.with_conv:
66
+ x = self.conv(x)
67
+ return x
68
+
69
+
70
+ class Downsample(nn.Module):
71
+ def __init__(self, in_channels, with_conv):
72
+ super().__init__()
73
+ self.with_conv = with_conv
74
+ if self.with_conv:
75
+ # no asymmetric padding in torch conv, must do it ourselves
76
+ self.conv = torch.nn.Conv2d(in_channels,
77
+ in_channels,
78
+ kernel_size=3,
79
+ stride=2,
80
+ padding=0)
81
+
82
+ def forward(self, x):
83
+ if self.with_conv:
84
+ pad = (0,1,0,1)
85
+ x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
86
+ x = self.conv(x)
87
+ else:
88
+ x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
89
+ return x
90
+
91
+
92
+ class ResnetBlock(nn.Module):
93
+ def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
94
+ dropout, temb_channels=512):
95
+ super().__init__()
96
+ self.in_channels = in_channels
97
+ out_channels = in_channels if out_channels is None else out_channels
98
+ self.out_channels = out_channels
99
+ self.use_conv_shortcut = conv_shortcut
100
+
101
+ self.norm1 = Normalize(in_channels)
102
+ self.conv1 = torch.nn.Conv2d(in_channels,
103
+ out_channels,
104
+ kernel_size=3,
105
+ stride=1,
106
+ padding=1)
107
+ if temb_channels > 0:
108
+ self.temb_proj = torch.nn.Linear(temb_channels,
109
+ out_channels)
110
+ self.norm2 = Normalize(out_channels)
111
+ self.dropout = torch.nn.Dropout(dropout)
112
+ self.conv2 = torch.nn.Conv2d(out_channels,
113
+ out_channels,
114
+ kernel_size=3,
115
+ stride=1,
116
+ padding=1)
117
+
118
+ if self.in_channels != self.out_channels:
119
+ if self.use_conv_shortcut:
120
+ self.conv_shortcut = torch.nn.Conv2d(in_channels,
121
+ out_channels,
122
+ kernel_size=3,
123
+ stride=1,
124
+ padding=1)
125
+ else:
126
+ self.nin_shortcut = torch.nn.Conv2d(in_channels,
127
+ out_channels,
128
+ kernel_size=1,
129
+ stride=1,
130
+ padding=0)
131
+
132
+ def forward(self, x, temb):
133
+ h = x
134
+ h = self.norm1(h)
135
+ h = nonlinearity(h)
136
+ h = self.conv1(h)
137
+
138
+ if temb is not None:
139
+ h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
140
+
141
+ h = self.norm2(h)
142
+ h = nonlinearity(h)
143
+ h = self.dropout(h)
144
+ h = self.conv2(h)
145
+
146
+ if self.in_channels != self.out_channels:
147
+ if self.use_conv_shortcut:
148
+ x = self.conv_shortcut(x)
149
+ else:
150
+ x = self.nin_shortcut(x)
151
+
152
+ return x+h
153
+
154
+ class ResnetBlock_dcn(nn.Module):
155
+ def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
156
+ dropout, temb_channels=512):
157
+ super().__init__()
158
+ self.in_channels = in_channels
159
+ out_channels = in_channels if out_channels is None else out_channels
160
+ self.out_channels = out_channels
161
+ self.use_conv_shortcut = conv_shortcut
162
+
163
+ self.norm1 = Normalize(in_channels)
164
+ self.conv1 = torch.nn.Conv2d(in_channels,
165
+ out_channels,
166
+ kernel_size=3,
167
+ stride=1,
168
+ padding=1)
169
+ self.dcn1 = ModulatedDeformConvPack(out_channels,
170
+ out_channels,
171
+ kernel_size=3,
172
+ stride=1,
173
+ padding=1)
174
+ if temb_channels > 0:
175
+ self.temb_proj = torch.nn.Linear(temb_channels,
176
+ out_channels)
177
+ self.norm2 = Normalize(out_channels)
178
+ self.dropout = torch.nn.Dropout(dropout)
179
+ self.conv2 = torch.nn.Conv2d(out_channels,
180
+ out_channels,
181
+ kernel_size=3,
182
+ stride=1,
183
+ padding=1)
184
+ self.dcn2 = ModulatedDeformConvPack(out_channels,
185
+ out_channels,
186
+ kernel_size=3,
187
+ stride=1,
188
+ padding=1)
189
+
190
+ if self.in_channels != self.out_channels:
191
+ if self.use_conv_shortcut:
192
+ self.conv_shortcut = torch.nn.Conv2d(in_channels,
193
+ out_channels,
194
+ kernel_size=3,
195
+ stride=1,
196
+ padding=1)
197
+ else:
198
+ self.nin_shortcut = torch.nn.Conv2d(in_channels,
199
+ out_channels,
200
+ kernel_size=1,
201
+ stride=1,
202
+ padding=0)
203
+
204
+ def forward(self, x,grayx, temb):
205
+ h = x
206
+ h = self.norm1(h)
207
+ h = nonlinearity(h)
208
+ h = self.conv1(h)
209
+ h = self.dcn1(h,grayx)+h
210
+
211
+ if temb is not None:
212
+ h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
213
+
214
+ h = self.norm2(h)
215
+ h = nonlinearity(h)
216
+ h = self.dropout(h)
217
+ h = self.conv2(h)
218
+ h = self.dcn2(h,grayx)+h
219
+
220
+ if self.in_channels != self.out_channels:
221
+ if self.use_conv_shortcut:
222
+ x = self.conv_shortcut(x)
223
+ else:
224
+ x = self.nin_shortcut(x)
225
+
226
+ return x+h
227
+
228
+
229
+ class AttnBlock(nn.Module):
230
+ def __init__(self, in_channels):
231
+ super().__init__()
232
+ self.in_channels = in_channels
233
+
234
+ self.norm = Normalize(in_channels)
235
+ self.q = torch.nn.Conv2d(in_channels,
236
+ in_channels,
237
+ kernel_size=1,
238
+ stride=1,
239
+ padding=0)
240
+ self.k = torch.nn.Conv2d(in_channels,
241
+ in_channels,
242
+ kernel_size=1,
243
+ stride=1,
244
+ padding=0)
245
+ self.v = torch.nn.Conv2d(in_channels,
246
+ in_channels,
247
+ kernel_size=1,
248
+ stride=1,
249
+ padding=0)
250
+ self.proj_out = torch.nn.Conv2d(in_channels,
251
+ in_channels,
252
+ kernel_size=1,
253
+ stride=1,
254
+ padding=0)
255
+
256
+ def forward(self, x):
257
+ h_ = x
258
+ h_ = self.norm(h_)
259
+ q = self.q(h_)
260
+ k = self.k(h_)
261
+ v = self.v(h_)
262
+
263
+ # compute attention
264
+ b,c,h,w = q.shape
265
+ q = q.reshape(b,c,h*w)
266
+ q = q.permute(0,2,1) # b,hw,c
267
+ k = k.reshape(b,c,h*w) # b,c,hw
268
+ w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
269
+ w_ = w_ * (int(c)**(-0.5))
270
+ w_ = torch.nn.functional.softmax(w_, dim=2)
271
+
272
+ # attend to values
273
+ v = v.reshape(b,c,h*w)
274
+ w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
275
+ h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
276
+ h_ = h_.reshape(b,c,h,w)
277
+
278
+ h_ = self.proj_out(h_)
279
+
280
+ return x+h_
281
+
282
+ class MemoryEfficientAttnBlock(nn.Module):
283
+ """
284
+ Uses xformers efficient implementation,
285
+ see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
286
+ Note: this is a single-head self-attention operation
287
+ """
288
+ #
289
+ def __init__(self, in_channels):
290
+ super().__init__()
291
+ self.in_channels = in_channels
292
+
293
+ self.norm = Normalize(in_channels)
294
+ self.q = torch.nn.Conv2d(in_channels,
295
+ in_channels,
296
+ kernel_size=1,
297
+ stride=1,
298
+ padding=0)
299
+ self.k = torch.nn.Conv2d(in_channels,
300
+ in_channels,
301
+ kernel_size=1,
302
+ stride=1,
303
+ padding=0)
304
+ self.v = torch.nn.Conv2d(in_channels,
305
+ in_channels,
306
+ kernel_size=1,
307
+ stride=1,
308
+ padding=0)
309
+ self.proj_out = torch.nn.Conv2d(in_channels,
310
+ in_channels,
311
+ kernel_size=1,
312
+ stride=1,
313
+ padding=0)
314
+ self.attention_op: Optional[Any] = None
315
+
316
+ def forward(self, x):
317
+ h_ = x
318
+ h_ = self.norm(h_)
319
+ q = self.q(h_)
320
+ k = self.k(h_)
321
+ v = self.v(h_)
322
+
323
+ # compute attention
324
+ B, C, H, W = q.shape
325
+ q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v))
326
+
327
+ q, k, v = map(
328
+ lambda t: t.unsqueeze(3)
329
+ .reshape(B, t.shape[1], 1, C)
330
+ .permute(0, 2, 1, 3)
331
+ .reshape(B * 1, t.shape[1], C)
332
+ .contiguous(),
333
+ (q, k, v),
334
+ )
335
+ out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
336
+
337
+ out = (
338
+ out.unsqueeze(0)
339
+ .reshape(B, 1, out.shape[1], C)
340
+ .permute(0, 2, 1, 3)
341
+ .reshape(B, out.shape[1], C)
342
+ )
343
+ out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C)
344
+ out = self.proj_out(out)
345
+ return x+out
346
+
347
+
348
+ class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
349
+ def forward(self, x, context=None, mask=None):
350
+ b, c, h, w = x.shape
351
+ x = rearrange(x, 'b c h w -> b (h w) c')
352
+ out = super().forward(x, context=context, mask=mask)
353
+ out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c)
354
+ return x + out
355
+
356
+
357
+ def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
358
+ assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none"], f'attn_type {attn_type} unknown'
359
+ if XFORMERS_IS_AVAILBLE and attn_type == "vanilla":
360
+ attn_type = "vanilla-xformers"
361
+ print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
362
+ if attn_type == "vanilla":
363
+ assert attn_kwargs is None
364
+ return AttnBlock(in_channels)
365
+ elif attn_type == "vanilla-xformers":
366
+ print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
367
+ return MemoryEfficientAttnBlock(in_channels)
368
+ elif type == "memory-efficient-cross-attn":
369
+ attn_kwargs["query_dim"] = in_channels
370
+ return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
371
+ elif attn_type == "none":
372
+ return nn.Identity(in_channels)
373
+ else:
374
+ raise NotImplementedError()
375
+
376
+
377
+ class Model(nn.Module):
378
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
379
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
380
+ resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
381
+ super().__init__()
382
+ if use_linear_attn: attn_type = "linear"
383
+ self.ch = ch
384
+ self.temb_ch = self.ch*4
385
+ self.num_resolutions = len(ch_mult)
386
+ self.num_res_blocks = num_res_blocks
387
+ self.resolution = resolution
388
+ self.in_channels = in_channels
389
+
390
+ self.use_timestep = use_timestep
391
+ if self.use_timestep:
392
+ # timestep embedding
393
+ self.temb = nn.Module()
394
+ self.temb.dense = nn.ModuleList([
395
+ torch.nn.Linear(self.ch,
396
+ self.temb_ch),
397
+ torch.nn.Linear(self.temb_ch,
398
+ self.temb_ch),
399
+ ])
400
+
401
+ # downsampling
402
+ self.conv_in = torch.nn.Conv2d(in_channels,
403
+ self.ch,
404
+ kernel_size=3,
405
+ stride=1,
406
+ padding=1)
407
+
408
+ curr_res = resolution
409
+ in_ch_mult = (1,)+tuple(ch_mult)
410
+ self.down = nn.ModuleList()
411
+ for i_level in range(self.num_resolutions):
412
+ block = nn.ModuleList()
413
+ attn = nn.ModuleList()
414
+ block_in = ch*in_ch_mult[i_level]
415
+ block_out = ch*ch_mult[i_level]
416
+ for i_block in range(self.num_res_blocks):
417
+ block.append(ResnetBlock(in_channels=block_in,
418
+ out_channels=block_out,
419
+ temb_channels=self.temb_ch,
420
+ dropout=dropout))
421
+ block_in = block_out
422
+ if curr_res in attn_resolutions:
423
+ attn.append(make_attn(block_in, attn_type=attn_type))
424
+ down = nn.Module()
425
+ down.block = block
426
+ down.attn = attn
427
+ if i_level != self.num_resolutions-1:
428
+ down.downsample = Downsample(block_in, resamp_with_conv)
429
+ curr_res = curr_res // 2
430
+ self.down.append(down)
431
+
432
+ # middle
433
+ self.mid = nn.Module()
434
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
435
+ out_channels=block_in,
436
+ temb_channels=self.temb_ch,
437
+ dropout=dropout)
438
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
439
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
440
+ out_channels=block_in,
441
+ temb_channels=self.temb_ch,
442
+ dropout=dropout)
443
+
444
+ # upsampling
445
+ self.up = nn.ModuleList()
446
+ for i_level in reversed(range(self.num_resolutions)):
447
+ block = nn.ModuleList()
448
+ attn = nn.ModuleList()
449
+ block_out = ch*ch_mult[i_level]
450
+ skip_in = ch*ch_mult[i_level]
451
+ for i_block in range(self.num_res_blocks+1):
452
+ if i_block == self.num_res_blocks:
453
+ skip_in = ch*in_ch_mult[i_level]
454
+ block.append(ResnetBlock(in_channels=block_in+skip_in,
455
+ out_channels=block_out,
456
+ temb_channels=self.temb_ch,
457
+ dropout=dropout))
458
+ block_in = block_out
459
+ if curr_res in attn_resolutions:
460
+ attn.append(make_attn(block_in, attn_type=attn_type))
461
+ up = nn.Module()
462
+ up.block = block
463
+ up.attn = attn
464
+ if i_level != 0:
465
+ up.upsample = Upsample(block_in, resamp_with_conv)
466
+ curr_res = curr_res * 2
467
+ self.up.insert(0, up) # prepend to get consistent order
468
+
469
+ # end
470
+ self.norm_out = Normalize(block_in)
471
+ self.conv_out = torch.nn.Conv2d(block_in,
472
+ out_ch,
473
+ kernel_size=3,
474
+ stride=1,
475
+ padding=1)
476
+
477
+ def forward(self, x, t=None, context=None):
478
+ #assert x.shape[2] == x.shape[3] == self.resolution
479
+ if context is not None:
480
+ # assume aligned context, cat along channel axis
481
+ x = torch.cat((x, context), dim=1)
482
+ if self.use_timestep:
483
+ # timestep embedding
484
+ assert t is not None
485
+ temb = get_timestep_embedding(t, self.ch)
486
+ temb = self.temb.dense[0](temb)
487
+ temb = nonlinearity(temb)
488
+ temb = self.temb.dense[1](temb)
489
+ else:
490
+ temb = None
491
+
492
+ # downsampling
493
+ hs = [self.conv_in(x)]
494
+ for i_level in range(self.num_resolutions):
495
+ for i_block in range(self.num_res_blocks):
496
+ h = self.down[i_level].block[i_block](hs[-1], temb)
497
+ if len(self.down[i_level].attn) > 0:
498
+ h = self.down[i_level].attn[i_block](h)
499
+ hs.append(h)
500
+ if i_level != self.num_resolutions-1:
501
+ hs.append(self.down[i_level].downsample(hs[-1]))
502
+
503
+ # middle
504
+ h = hs[-1]
505
+ h = self.mid.block_1(h, temb)
506
+ h = self.mid.attn_1(h)
507
+ h = self.mid.block_2(h, temb)
508
+
509
+ # upsampling
510
+ for i_level in reversed(range(self.num_resolutions)):
511
+ for i_block in range(self.num_res_blocks+1):
512
+ h = self.up[i_level].block[i_block](
513
+ torch.cat([h, hs.pop()], dim=1), temb)
514
+ if len(self.up[i_level].attn) > 0:
515
+ h = self.up[i_level].attn[i_block](h)
516
+ if i_level != 0:
517
+ h = self.up[i_level].upsample(h)
518
+
519
+ # end
520
+ h = self.norm_out(h)
521
+ h = nonlinearity(h)
522
+ h = self.conv_out(h)
523
+ return h
524
+
525
+ def get_last_layer(self):
526
+ return self.conv_out.weight
527
+
528
+
529
+ class Encoder(nn.Module):
530
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
531
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
532
+ resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
533
+ **ignore_kwargs):
534
+ super().__init__()
535
+ if use_linear_attn: attn_type = "linear"
536
+ self.ch = ch
537
+ self.temb_ch = 0
538
+ self.num_resolutions = len(ch_mult)
539
+ self.num_res_blocks = num_res_blocks
540
+ self.resolution = resolution
541
+ self.in_channels = in_channels
542
+
543
+ # downsampling
544
+ self.conv_in = torch.nn.Conv2d(in_channels,
545
+ self.ch,
546
+ kernel_size=3,
547
+ stride=1,
548
+ padding=1)
549
+
550
+ curr_res = resolution
551
+ in_ch_mult = (1,)+tuple(ch_mult)
552
+ self.in_ch_mult = in_ch_mult
553
+ self.down = nn.ModuleList()
554
+ for i_level in range(self.num_resolutions):
555
+ block = nn.ModuleList()
556
+ attn = nn.ModuleList()
557
+ block_in = ch*in_ch_mult[i_level]
558
+ block_out = ch*ch_mult[i_level]
559
+ for i_block in range(self.num_res_blocks):
560
+ block.append(ResnetBlock(in_channels=block_in,
561
+ out_channels=block_out,
562
+ temb_channels=self.temb_ch,
563
+ dropout=dropout))
564
+ block_in = block_out
565
+ if curr_res in attn_resolutions:
566
+ attn.append(make_attn(block_in, attn_type=attn_type))
567
+ down = nn.Module()
568
+ down.block = block
569
+ down.attn = attn
570
+ if i_level != self.num_resolutions-1:
571
+ down.downsample = Downsample(block_in, resamp_with_conv)
572
+ curr_res = curr_res // 2
573
+ self.down.append(down)
574
+
575
+ # middle
576
+ self.mid = nn.Module()
577
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
578
+ out_channels=block_in,
579
+ temb_channels=self.temb_ch,
580
+ dropout=dropout)
581
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
582
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
583
+ out_channels=block_in,
584
+ temb_channels=self.temb_ch,
585
+ dropout=dropout)
586
+
587
+ # end
588
+ self.norm_out = Normalize(block_in)
589
+ self.conv_out = torch.nn.Conv2d(block_in,
590
+ 2*z_channels if double_z else z_channels,
591
+ kernel_size=3,
592
+ stride=1,
593
+ padding=1)
594
+
595
+ def forward(self, x):
596
+ # timestep embedding
597
+ temb = None
598
+
599
+ # downsampling
600
+ hs = [self.conv_in(x)]
601
+ for i_level in range(self.num_resolutions):
602
+ for i_block in range(self.num_res_blocks):
603
+ h = self.down[i_level].block[i_block](hs[-1], temb)
604
+ if len(self.down[i_level].attn) > 0:
605
+ h = self.down[i_level].attn[i_block](h)
606
+ hs.append(h)
607
+ if i_level != self.num_resolutions-1:
608
+ hs.append(self.down[i_level].downsample(hs[-1]))
609
+
610
+ # middle
611
+ h = hs[-1]
612
+ h = self.mid.block_1(h, temb)
613
+ h = self.mid.attn_1(h)
614
+ h = self.mid.block_2(h, temb)
615
+
616
+ # end
617
+ h = self.norm_out(h)
618
+ h = nonlinearity(h)
619
+ h = self.conv_out(h)
620
+ return h
621
+
622
+ class ModulatedDeformConv(nn.Module):
623
+
624
+ def __init__(self,
625
+ in_channels,
626
+ out_channels,
627
+ kernel_size,
628
+ stride=1,
629
+ padding=0,
630
+ dilation=1,
631
+ groups=1,
632
+ deformable_groups=1,
633
+ bias=True):
634
+ super(ModulatedDeformConv, self).__init__()
635
+ self.in_channels = in_channels
636
+ self.out_channels = out_channels
637
+ self.kernel_size = _pair(kernel_size)
638
+ self.stride = stride
639
+ self.padding = padding
640
+ self.dilation = dilation
641
+ self.groups = groups
642
+ self.deformable_groups = deformable_groups
643
+ self.with_bias = bias
644
+ # enable compatibility with nn.Conv2d
645
+ self.transposed = False
646
+ self.output_padding = _single(0)
647
+
648
+ self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, *self.kernel_size))
649
+ if bias:
650
+ self.bias = nn.Parameter(torch.Tensor(out_channels))
651
+ else:
652
+ self.register_parameter('bias', None)
653
+ self.init_weights()
654
+
655
+ def init_weights(self):
656
+ n = self.in_channels
657
+ for k in self.kernel_size:
658
+ n *= k
659
+ stdv = 1. / math.sqrt(n)
660
+ self.weight.data.uniform_(-stdv, stdv)
661
+ if self.bias is not None:
662
+ self.bias.data.zero_()
663
+
664
+ # def forward(self, x, offset, mask):
665
+ # return torchvision.ops.con(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation,
666
+ # self.groups, self.deformable_groups)
667
+
668
+
669
+ class ModulatedDeformConvPack(ModulatedDeformConv):
670
+ """A ModulatedDeformable Conv Encapsulation that acts as normal Conv layers.
671
+
672
+ Args:
673
+ in_channels (int): Same as nn.Conv2d.
674
+ out_channels (int): Same as nn.Conv2d.
675
+ kernel_size (int or tuple[int]): Same as nn.Conv2d.
676
+ stride (int or tuple[int]): Same as nn.Conv2d.
677
+ padding (int or tuple[int]): Same as nn.Conv2d.
678
+ dilation (int or tuple[int]): Same as nn.Conv2d.
679
+ groups (int): Same as nn.Conv2d.
680
+ bias (bool or str): If specified as `auto`, it will be decided by the
681
+ norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
682
+ False.
683
+ """
684
+
685
+ _version = 2
686
+
687
+ def __init__(self, *args, **kwargs):
688
+ super(ModulatedDeformConvPack, self).__init__(*args, **kwargs)
689
+
690
+ self.conv_offset = nn.Conv2d(
691
+ self.in_channels+4,
692
+ self.deformable_groups * 3 * self.kernel_size[0] * self.kernel_size[1],
693
+ kernel_size=self.kernel_size,
694
+ stride=_pair(self.stride),
695
+ padding=_pair(self.padding),
696
+ dilation=_pair(self.dilation),
697
+ bias=True)
698
+ self.init_weights()
699
+
700
+ def init_weights(self):
701
+ super(ModulatedDeformConvPack, self).init_weights()
702
+ if hasattr(self, 'conv_offset'):
703
+ self.conv_offset.weight.data.zero_()
704
+ self.conv_offset.bias.data.zero_()
705
+
706
+ def forward(self, x, gray_content):
707
+ out = self.conv_offset(torch.cat((x,gray_content),dim=1))
708
+ o1, o2, mask = torch.chunk(out, 3, dim=1)
709
+ offset = torch.cat((o1, o2), dim=1)
710
+ mask = torch.sigmoid(mask)
711
+
712
+ # return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation,
713
+ # self.groups, self.deformable_groups)
714
+ return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding,
715
+ self.dilation, mask)
716
+
717
+
718
+ # class SecondOrderDeformableAlignment(ModulatedDeformConvPack):
719
+ # """Second-order deformable alignment module.
720
+
721
+ # Args:
722
+ # in_channels (int): Same as nn.Conv2d.
723
+ # out_channels (int): Same as nn.Conv2d.
724
+ # kernel_size (int or tuple[int]): Same as nn.Conv2d.
725
+ # stride (int or tuple[int]): Same as nn.Conv2d.
726
+ # padding (int or tuple[int]): Same as nn.Conv2d.
727
+ # dilation (int or tuple[int]): Same as nn.Conv2d.
728
+ # groups (int): Same as nn.Conv2d.
729
+ # bias (bool or str): If specified as `auto`, it will be decided by the
730
+ # norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
731
+ # False.
732
+ # max_residue_magnitude (int): The maximum magnitude of the offset
733
+ # residue (Eq. 6 in paper). Default: 10.
734
+ # """
735
+
736
+ # def __init__(self, *args, **kwargs):
737
+ # self.max_residue_magnitude = kwargs.pop('max_residue_magnitude', 10)
738
+
739
+ # super(SecondOrderDeformableAlignment, self).__init__(*args, **kwargs)
740
+
741
+ # self.conv_offset = nn.Sequential(
742
+ # nn.Conv2d(3 * self.out_channels + 4, self.out_channels, 3, 1, 1),
743
+ # nn.LeakyReLU(negative_slope=0.1, inplace=True),
744
+ # nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1),
745
+ # nn.LeakyReLU(negative_slope=0.1, inplace=True),
746
+ # nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1),
747
+ # nn.LeakyReLU(negative_slope=0.1, inplace=True),
748
+ # nn.Conv2d(self.out_channels, 27 * self.deformable_groups, 3, 1, 1),
749
+ # )
750
+
751
+ # self.init_offset()
752
+
753
+ # def init_offset(self):
754
+
755
+ # def _constant_init(module, val, bias=0):
756
+ # if hasattr(module, 'weight') and module.weight is not None:
757
+ # nn.init.constant_(module.weight, val)
758
+ # if hasattr(module, 'bias') and module.bias is not None:
759
+ # nn.init.constant_(module.bias, bias)
760
+
761
+ # _constant_init(self.conv_offset[-1], val=0, bias=0)
762
+
763
+ # def forward(self, x, extra_feat, flow_1, flow_2):
764
+ # extra_feat = torch.cat([extra_feat, flow_1, flow_2], dim=1)
765
+ # out = self.conv_offset(extra_feat)
766
+ # o1, o2, mask = torch.chunk(out, 3, dim=1)
767
+
768
+ # # offset
769
+ # offset = self.max_residue_magnitude * torch.tanh(torch.cat((o1, o2), dim=1))
770
+ # offset_1, offset_2 = torch.chunk(offset, 2, dim=1)
771
+ # offset_1 = offset_1 + flow_1.flip(1).repeat(1, offset_1.size(1) // 2, 1, 1)
772
+ # offset_2 = offset_2 + flow_2.flip(1).repeat(1, offset_2.size(1) // 2, 1, 1)
773
+ # offset = torch.cat([offset_1, offset_2], dim=1)
774
+
775
+ # # mask
776
+ # mask = torch.sigmoid(mask)
777
+
778
+ # return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding,
779
+ # self.dilation, mask)
780
+
781
+ class Decoder(nn.Module):
782
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
783
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
784
+ resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
785
+ attn_type="vanilla", **ignorekwargs):
786
+ super().__init__()
787
+ if use_linear_attn: attn_type = "linear"
788
+ self.ch = ch
789
+ self.temb_ch = 0
790
+ self.num_resolutions = len(ch_mult)
791
+ self.num_res_blocks = num_res_blocks
792
+ self.resolution = resolution
793
+ self.in_channels = in_channels
794
+ self.give_pre_end = give_pre_end
795
+ self.tanh_out = tanh_out
796
+
797
+ # compute in_ch_mult, block_in and curr_res at lowest res
798
+ in_ch_mult = (1,)+tuple(ch_mult)
799
+ block_in = ch*ch_mult[self.num_resolutions-1]
800
+ curr_res = resolution // 2**(self.num_resolutions-1)
801
+ self.z_shape = (1,z_channels,curr_res,curr_res)
802
+ print("Working with z of shape {} = {} dimensions.".format(
803
+ self.z_shape, np.prod(self.z_shape)))
804
+
805
+ # z to block_in
806
+ self.conv_in = torch.nn.Conv2d(z_channels,
807
+ block_in,
808
+ kernel_size=3,
809
+ stride=1,
810
+ padding=1)
811
+
812
+ self.dcn_in = ModulatedDeformConvPack(block_in,
813
+ block_in,
814
+ kernel_size=3,
815
+ stride=1,
816
+ padding=1)
817
+ # middle
818
+ self.mid = nn.Module()
819
+ self.mid.block_1 = ResnetBlock_dcn(in_channels=block_in,
820
+ out_channels=block_in,
821
+ temb_channels=self.temb_ch,
822
+ dropout=dropout)
823
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
824
+ self.mid.block_2 = ResnetBlock_dcn(in_channels=block_in,
825
+ out_channels=block_in,
826
+ temb_channels=self.temb_ch,
827
+ dropout=dropout)
828
+
829
+ # upsampling
830
+ self.up = nn.ModuleList()
831
+ for i_level in reversed(range(self.num_resolutions)):
832
+ block = nn.ModuleList()
833
+ attn = nn.ModuleList()
834
+ block_out = ch*ch_mult[i_level]
835
+ for i_block in range(self.num_res_blocks+1):
836
+ block.append(ResnetBlock(in_channels=block_in,
837
+ out_channels=block_out,
838
+ temb_channels=self.temb_ch,
839
+ dropout=dropout))
840
+ # else:
841
+ # block.append(ResnetBlock_dcn(in_channels=block_in,
842
+ # out_channels=block_out,
843
+ # temb_channels=self.temb_ch,
844
+ # dropout=dropout))
845
+ block_in = block_out
846
+ if curr_res in attn_resolutions:
847
+ attn.append(make_attn(block_in, attn_type=attn_type))
848
+ up = nn.Module()
849
+ up.block = block
850
+ up.attn = attn
851
+ if i_level != 0:
852
+ up.upsample = Upsample(block_in, resamp_with_conv)
853
+ curr_res = curr_res * 2
854
+ self.up.insert(0, up) # prepend to get consistent order
855
+
856
+ # end
857
+ self.norm_out = Normalize(block_in)
858
+ self.conv_out = torch.nn.Conv2d(block_in,
859
+ out_ch,
860
+ kernel_size=3,
861
+ stride=1,
862
+ padding=1)
863
+ # self.dcn_out = ModulatedDeformConvPack(out_ch,
864
+ # out_ch,
865
+ # kernel_size=3,
866
+ # stride=1,
867
+ # padding=1)
868
+
869
+ def forward(self, z, gray_content_z):
870
+ #assert z.shape[1:] == self.z_shape[1:]
871
+ self.last_z_shape = z.shape
872
+
873
+ # timestep embedding
874
+ temb = None
875
+
876
+ # z to block_in
877
+ h = self.conv_in(z)
878
+ # print("h",h.shape)
879
+ # print("gray_content_z",gray_content_z.shape)
880
+ h = self.dcn_in(h, gray_content_z)+h
881
+
882
+ # middle
883
+ h = self.mid.block_1(h, gray_content_z,temb)
884
+ h = self.mid.attn_1(h)
885
+ h = self.mid.block_2(h, gray_content_z,temb)
886
+
887
+ # upsampling
888
+ for i_level in reversed(range(self.num_resolutions)):
889
+ for i_block in range(self.num_res_blocks+1):
890
+ h = self.up[i_level].block[i_block](h, temb)#h, gray_content_z,temb
891
+ if len(self.up[i_level].attn) > 0:
892
+ h = self.up[i_level].attn[i_block](h)
893
+ if i_level != 0:
894
+ h = self.up[i_level].upsample(h)
895
+
896
+ # end
897
+ if self.give_pre_end:
898
+ return h
899
+
900
+ h = self.norm_out(h)
901
+ h = nonlinearity(h)
902
+ h = self.conv_out(h)
903
+ # print(h.shape)
904
+ # h = self.dcn_out(h,gray_content_z)
905
+ if self.tanh_out:
906
+ h = torch.tanh(h)
907
+ return h
908
+
909
+
910
+ class SimpleDecoder(nn.Module):
911
+ def __init__(self, in_channels, out_channels, *args, **kwargs):
912
+ super().__init__()
913
+ self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
914
+ ResnetBlock(in_channels=in_channels,
915
+ out_channels=2 * in_channels,
916
+ temb_channels=0, dropout=0.0),
917
+ ResnetBlock(in_channels=2 * in_channels,
918
+ out_channels=4 * in_channels,
919
+ temb_channels=0, dropout=0.0),
920
+ ResnetBlock(in_channels=4 * in_channels,
921
+ out_channels=2 * in_channels,
922
+ temb_channels=0, dropout=0.0),
923
+ nn.Conv2d(2*in_channels, in_channels, 1),
924
+ Upsample(in_channels, with_conv=True)])
925
+ # end
926
+ self.norm_out = Normalize(in_channels)
927
+ self.conv_out = torch.nn.Conv2d(in_channels,
928
+ out_channels,
929
+ kernel_size=3,
930
+ stride=1,
931
+ padding=1)
932
+
933
+ def forward(self, x):
934
+ for i, layer in enumerate(self.model):
935
+ if i in [1,2,3]:
936
+ x = layer(x, None)
937
+ else:
938
+ x = layer(x)
939
+
940
+ h = self.norm_out(x)
941
+ h = nonlinearity(h)
942
+ x = self.conv_out(h)
943
+ return x
944
+
945
+
946
+ class UpsampleDecoder(nn.Module):
947
+ def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
948
+ ch_mult=(2,2), dropout=0.0):
949
+ super().__init__()
950
+ # upsampling
951
+ self.temb_ch = 0
952
+ self.num_resolutions = len(ch_mult)
953
+ self.num_res_blocks = num_res_blocks
954
+ block_in = in_channels
955
+ curr_res = resolution // 2 ** (self.num_resolutions - 1)
956
+ self.res_blocks = nn.ModuleList()
957
+ self.upsample_blocks = nn.ModuleList()
958
+ for i_level in range(self.num_resolutions):
959
+ res_block = []
960
+ block_out = ch * ch_mult[i_level]
961
+ for i_block in range(self.num_res_blocks + 1):
962
+ res_block.append(ResnetBlock(in_channels=block_in,
963
+ out_channels=block_out,
964
+ temb_channels=self.temb_ch,
965
+ dropout=dropout))
966
+ block_in = block_out
967
+ self.res_blocks.append(nn.ModuleList(res_block))
968
+ if i_level != self.num_resolutions - 1:
969
+ self.upsample_blocks.append(Upsample(block_in, True))
970
+ curr_res = curr_res * 2
971
+
972
+ # end
973
+ self.norm_out = Normalize(block_in)
974
+ self.conv_out = torch.nn.Conv2d(block_in,
975
+ out_channels,
976
+ kernel_size=3,
977
+ stride=1,
978
+ padding=1)
979
+
980
+ def forward(self, x):
981
+ # upsampling
982
+ h = x
983
+ for k, i_level in enumerate(range(self.num_resolutions)):
984
+ for i_block in range(self.num_res_blocks + 1):
985
+ h = self.res_blocks[i_level][i_block](h, None)
986
+ if i_level != self.num_resolutions - 1:
987
+ h = self.upsample_blocks[k](h)
988
+ h = self.norm_out(h)
989
+ h = nonlinearity(h)
990
+ h = self.conv_out(h)
991
+ return h
992
+
993
+
994
+ class LatentRescaler(nn.Module):
995
+ def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
996
+ super().__init__()
997
+ # residual block, interpolate, residual block
998
+ self.factor = factor
999
+ self.conv_in = nn.Conv2d(in_channels,
1000
+ mid_channels,
1001
+ kernel_size=3,
1002
+ stride=1,
1003
+ padding=1)
1004
+ self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
1005
+ out_channels=mid_channels,
1006
+ temb_channels=0,
1007
+ dropout=0.0) for _ in range(depth)])
1008
+ self.attn = AttnBlock(mid_channels)
1009
+ self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
1010
+ out_channels=mid_channels,
1011
+ temb_channels=0,
1012
+ dropout=0.0) for _ in range(depth)])
1013
+
1014
+ self.conv_out = nn.Conv2d(mid_channels,
1015
+ out_channels,
1016
+ kernel_size=1,
1017
+ )
1018
+
1019
+ def forward(self, x):
1020
+ x = self.conv_in(x)
1021
+ for block in self.res_block1:
1022
+ x = block(x, None)
1023
+ x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
1024
+ x = self.attn(x)
1025
+ for block in self.res_block2:
1026
+ x = block(x, None)
1027
+ x = self.conv_out(x)
1028
+ return x
1029
+
1030
+
1031
+ class MergedRescaleEncoder(nn.Module):
1032
+ def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
1033
+ attn_resolutions, dropout=0.0, resamp_with_conv=True,
1034
+ ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
1035
+ super().__init__()
1036
+ intermediate_chn = ch * ch_mult[-1]
1037
+ self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
1038
+ z_channels=intermediate_chn, double_z=False, resolution=resolution,
1039
+ attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
1040
+ out_ch=None)
1041
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
1042
+ mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
1043
+
1044
+ def forward(self, x):
1045
+ x = self.encoder(x)
1046
+ x = self.rescaler(x)
1047
+ return x
1048
+
1049
+
1050
+ class MergedRescaleDecoder(nn.Module):
1051
+ def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
1052
+ dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
1053
+ super().__init__()
1054
+ tmp_chn = z_channels*ch_mult[-1]
1055
+ self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
1056
+ resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
1057
+ ch_mult=ch_mult, resolution=resolution, ch=ch)
1058
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
1059
+ out_channels=tmp_chn, depth=rescale_module_depth)
1060
+
1061
+ def forward(self, x):
1062
+ x = self.rescaler(x)
1063
+ x = self.decoder(x)
1064
+ return x
1065
+
1066
+
1067
+ class Upsampler(nn.Module):
1068
+ def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
1069
+ super().__init__()
1070
+ assert out_size >= in_size
1071
+ num_blocks = int(np.log2(out_size//in_size))+1
1072
+ factor_up = 1.+ (out_size % in_size)
1073
+ print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
1074
+ self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
1075
+ out_channels=in_channels)
1076
+ self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
1077
+ attn_resolutions=[], in_channels=None, ch=in_channels,
1078
+ ch_mult=[ch_mult for _ in range(num_blocks)])
1079
+
1080
+ def forward(self, x):
1081
+ x = self.rescaler(x)
1082
+ x = self.decoder(x)
1083
+ return x
1084
+
1085
+
1086
+ class Resize(nn.Module):
1087
+ def __init__(self, in_channels=None, learned=False, mode="bilinear"):
1088
+ super().__init__()
1089
+ self.with_conv = learned
1090
+ self.mode = mode
1091
+ if self.with_conv:
1092
+ print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
1093
+ raise NotImplementedError()
1094
+ assert in_channels is not None
1095
+ # no asymmetric padding in torch conv, must do it ourselves
1096
+ self.conv = torch.nn.Conv2d(in_channels,
1097
+ in_channels,
1098
+ kernel_size=4,
1099
+ stride=2,
1100
+ padding=1)
1101
+
1102
+ def forward(self, x, scale_factor=1.0):
1103
+ if scale_factor==1.0:
1104
+ return x
1105
+ else:
1106
+ x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
1107
+ return x
Control-Color/ldm/modules/diffusionmodules/model_brefore_dcn.py ADDED
@@ -0,0 +1,852 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pytorch_diffusion + derived encoder decoder
2
+ import math
3
+ import torch
4
+ import torch.nn as nn
5
+ import numpy as np
6
+ from einops import rearrange
7
+ from typing import Optional, Any
8
+
9
+ from ldm.modules.attention import MemoryEfficientCrossAttention
10
+
11
+ try:
12
+ import xformers
13
+ import xformers.ops
14
+ XFORMERS_IS_AVAILBLE = True
15
+ except:
16
+ XFORMERS_IS_AVAILBLE = False
17
+ print("No module 'xformers'. Proceeding without it.")
18
+
19
+
20
+ def get_timestep_embedding(timesteps, embedding_dim):
21
+ """
22
+ This matches the implementation in Denoising Diffusion Probabilistic Models:
23
+ From Fairseq.
24
+ Build sinusoidal embeddings.
25
+ This matches the implementation in tensor2tensor, but differs slightly
26
+ from the description in Section 3.5 of "Attention Is All You Need".
27
+ """
28
+ assert len(timesteps.shape) == 1
29
+
30
+ half_dim = embedding_dim // 2
31
+ emb = math.log(10000) / (half_dim - 1)
32
+ emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
33
+ emb = emb.to(device=timesteps.device)
34
+ emb = timesteps.float()[:, None] * emb[None, :]
35
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
36
+ if embedding_dim % 2 == 1: # zero pad
37
+ emb = torch.nn.functional.pad(emb, (0,1,0,0))
38
+ return emb
39
+
40
+
41
+ def nonlinearity(x):
42
+ # swish
43
+ return x*torch.sigmoid(x)
44
+
45
+
46
+ def Normalize(in_channels, num_groups=32):
47
+ return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
48
+
49
+
50
+ class Upsample(nn.Module):
51
+ def __init__(self, in_channels, with_conv):
52
+ super().__init__()
53
+ self.with_conv = with_conv
54
+ if self.with_conv:
55
+ self.conv = torch.nn.Conv2d(in_channels,
56
+ in_channels,
57
+ kernel_size=3,
58
+ stride=1,
59
+ padding=1)
60
+
61
+ def forward(self, x):
62
+ x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
63
+ if self.with_conv:
64
+ x = self.conv(x)
65
+ return x
66
+
67
+
68
+ class Downsample(nn.Module):
69
+ def __init__(self, in_channels, with_conv):
70
+ super().__init__()
71
+ self.with_conv = with_conv
72
+ if self.with_conv:
73
+ # no asymmetric padding in torch conv, must do it ourselves
74
+ self.conv = torch.nn.Conv2d(in_channels,
75
+ in_channels,
76
+ kernel_size=3,
77
+ stride=2,
78
+ padding=0)
79
+
80
+ def forward(self, x):
81
+ if self.with_conv:
82
+ pad = (0,1,0,1)
83
+ x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
84
+ x = self.conv(x)
85
+ else:
86
+ x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
87
+ return x
88
+
89
+
90
+ class ResnetBlock(nn.Module):
91
+ def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
92
+ dropout, temb_channels=512):
93
+ super().__init__()
94
+ self.in_channels = in_channels
95
+ out_channels = in_channels if out_channels is None else out_channels
96
+ self.out_channels = out_channels
97
+ self.use_conv_shortcut = conv_shortcut
98
+
99
+ self.norm1 = Normalize(in_channels)
100
+ self.conv1 = torch.nn.Conv2d(in_channels,
101
+ out_channels,
102
+ kernel_size=3,
103
+ stride=1,
104
+ padding=1)
105
+ if temb_channels > 0:
106
+ self.temb_proj = torch.nn.Linear(temb_channels,
107
+ out_channels)
108
+ self.norm2 = Normalize(out_channels)
109
+ self.dropout = torch.nn.Dropout(dropout)
110
+ self.conv2 = torch.nn.Conv2d(out_channels,
111
+ out_channels,
112
+ kernel_size=3,
113
+ stride=1,
114
+ padding=1)
115
+ if self.in_channels != self.out_channels:
116
+ if self.use_conv_shortcut:
117
+ self.conv_shortcut = torch.nn.Conv2d(in_channels,
118
+ out_channels,
119
+ kernel_size=3,
120
+ stride=1,
121
+ padding=1)
122
+ else:
123
+ self.nin_shortcut = torch.nn.Conv2d(in_channels,
124
+ out_channels,
125
+ kernel_size=1,
126
+ stride=1,
127
+ padding=0)
128
+
129
+ def forward(self, x, temb):
130
+ h = x
131
+ h = self.norm1(h)
132
+ h = nonlinearity(h)
133
+ h = self.conv1(h)
134
+
135
+ if temb is not None:
136
+ h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
137
+
138
+ h = self.norm2(h)
139
+ h = nonlinearity(h)
140
+ h = self.dropout(h)
141
+ h = self.conv2(h)
142
+
143
+ if self.in_channels != self.out_channels:
144
+ if self.use_conv_shortcut:
145
+ x = self.conv_shortcut(x)
146
+ else:
147
+ x = self.nin_shortcut(x)
148
+
149
+ return x+h
150
+
151
+
152
+ class AttnBlock(nn.Module):
153
+ def __init__(self, in_channels):
154
+ super().__init__()
155
+ self.in_channels = in_channels
156
+
157
+ self.norm = Normalize(in_channels)
158
+ self.q = torch.nn.Conv2d(in_channels,
159
+ in_channels,
160
+ kernel_size=1,
161
+ stride=1,
162
+ padding=0)
163
+ self.k = torch.nn.Conv2d(in_channels,
164
+ in_channels,
165
+ kernel_size=1,
166
+ stride=1,
167
+ padding=0)
168
+ self.v = torch.nn.Conv2d(in_channels,
169
+ in_channels,
170
+ kernel_size=1,
171
+ stride=1,
172
+ padding=0)
173
+ self.proj_out = torch.nn.Conv2d(in_channels,
174
+ in_channels,
175
+ kernel_size=1,
176
+ stride=1,
177
+ padding=0)
178
+
179
+ def forward(self, x):
180
+ h_ = x
181
+ h_ = self.norm(h_)
182
+ q = self.q(h_)
183
+ k = self.k(h_)
184
+ v = self.v(h_)
185
+
186
+ # compute attention
187
+ b,c,h,w = q.shape
188
+ q = q.reshape(b,c,h*w)
189
+ q = q.permute(0,2,1) # b,hw,c
190
+ k = k.reshape(b,c,h*w) # b,c,hw
191
+ w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
192
+ w_ = w_ * (int(c)**(-0.5))
193
+ w_ = torch.nn.functional.softmax(w_, dim=2)
194
+
195
+ # attend to values
196
+ v = v.reshape(b,c,h*w)
197
+ w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
198
+ h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
199
+ h_ = h_.reshape(b,c,h,w)
200
+
201
+ h_ = self.proj_out(h_)
202
+
203
+ return x+h_
204
+
205
+ class MemoryEfficientAttnBlock(nn.Module):
206
+ """
207
+ Uses xformers efficient implementation,
208
+ see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
209
+ Note: this is a single-head self-attention operation
210
+ """
211
+ #
212
+ def __init__(self, in_channels):
213
+ super().__init__()
214
+ self.in_channels = in_channels
215
+
216
+ self.norm = Normalize(in_channels)
217
+ self.q = torch.nn.Conv2d(in_channels,
218
+ in_channels,
219
+ kernel_size=1,
220
+ stride=1,
221
+ padding=0)
222
+ self.k = torch.nn.Conv2d(in_channels,
223
+ in_channels,
224
+ kernel_size=1,
225
+ stride=1,
226
+ padding=0)
227
+ self.v = torch.nn.Conv2d(in_channels,
228
+ in_channels,
229
+ kernel_size=1,
230
+ stride=1,
231
+ padding=0)
232
+ self.proj_out = torch.nn.Conv2d(in_channels,
233
+ in_channels,
234
+ kernel_size=1,
235
+ stride=1,
236
+ padding=0)
237
+ self.attention_op: Optional[Any] = None
238
+
239
+ def forward(self, x):
240
+ h_ = x
241
+ h_ = self.norm(h_)
242
+ q = self.q(h_)
243
+ k = self.k(h_)
244
+ v = self.v(h_)
245
+
246
+ # compute attention
247
+ B, C, H, W = q.shape
248
+ q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v))
249
+
250
+ q, k, v = map(
251
+ lambda t: t.unsqueeze(3)
252
+ .reshape(B, t.shape[1], 1, C)
253
+ .permute(0, 2, 1, 3)
254
+ .reshape(B * 1, t.shape[1], C)
255
+ .contiguous(),
256
+ (q, k, v),
257
+ )
258
+ out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
259
+
260
+ out = (
261
+ out.unsqueeze(0)
262
+ .reshape(B, 1, out.shape[1], C)
263
+ .permute(0, 2, 1, 3)
264
+ .reshape(B, out.shape[1], C)
265
+ )
266
+ out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C)
267
+ out = self.proj_out(out)
268
+ return x+out
269
+
270
+
271
+ class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
272
+ def forward(self, x, context=None, mask=None):
273
+ b, c, h, w = x.shape
274
+ x = rearrange(x, 'b c h w -> b (h w) c')
275
+ out = super().forward(x, context=context, mask=mask)
276
+ out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c)
277
+ return x + out
278
+
279
+
280
+ def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
281
+ assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none"], f'attn_type {attn_type} unknown'
282
+ if XFORMERS_IS_AVAILBLE and attn_type == "vanilla":
283
+ attn_type = "vanilla-xformers"
284
+ print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
285
+ if attn_type == "vanilla":
286
+ assert attn_kwargs is None
287
+ return AttnBlock(in_channels)
288
+ elif attn_type == "vanilla-xformers":
289
+ print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
290
+ return MemoryEfficientAttnBlock(in_channels)
291
+ elif type == "memory-efficient-cross-attn":
292
+ attn_kwargs["query_dim"] = in_channels
293
+ return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
294
+ elif attn_type == "none":
295
+ return nn.Identity(in_channels)
296
+ else:
297
+ raise NotImplementedError()
298
+
299
+
300
+ class Model(nn.Module):
301
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
302
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
303
+ resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
304
+ super().__init__()
305
+ if use_linear_attn: attn_type = "linear"
306
+ self.ch = ch
307
+ self.temb_ch = self.ch*4
308
+ self.num_resolutions = len(ch_mult)
309
+ self.num_res_blocks = num_res_blocks
310
+ self.resolution = resolution
311
+ self.in_channels = in_channels
312
+
313
+ self.use_timestep = use_timestep
314
+ if self.use_timestep:
315
+ # timestep embedding
316
+ self.temb = nn.Module()
317
+ self.temb.dense = nn.ModuleList([
318
+ torch.nn.Linear(self.ch,
319
+ self.temb_ch),
320
+ torch.nn.Linear(self.temb_ch,
321
+ self.temb_ch),
322
+ ])
323
+
324
+ # downsampling
325
+ self.conv_in = torch.nn.Conv2d(in_channels,
326
+ self.ch,
327
+ kernel_size=3,
328
+ stride=1,
329
+ padding=1)
330
+
331
+ curr_res = resolution
332
+ in_ch_mult = (1,)+tuple(ch_mult)
333
+ self.down = nn.ModuleList()
334
+ for i_level in range(self.num_resolutions):
335
+ block = nn.ModuleList()
336
+ attn = nn.ModuleList()
337
+ block_in = ch*in_ch_mult[i_level]
338
+ block_out = ch*ch_mult[i_level]
339
+ for i_block in range(self.num_res_blocks):
340
+ block.append(ResnetBlock(in_channels=block_in,
341
+ out_channels=block_out,
342
+ temb_channels=self.temb_ch,
343
+ dropout=dropout))
344
+ block_in = block_out
345
+ if curr_res in attn_resolutions:
346
+ attn.append(make_attn(block_in, attn_type=attn_type))
347
+ down = nn.Module()
348
+ down.block = block
349
+ down.attn = attn
350
+ if i_level != self.num_resolutions-1:
351
+ down.downsample = Downsample(block_in, resamp_with_conv)
352
+ curr_res = curr_res // 2
353
+ self.down.append(down)
354
+
355
+ # middle
356
+ self.mid = nn.Module()
357
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
358
+ out_channels=block_in,
359
+ temb_channels=self.temb_ch,
360
+ dropout=dropout)
361
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
362
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
363
+ out_channels=block_in,
364
+ temb_channels=self.temb_ch,
365
+ dropout=dropout)
366
+
367
+ # upsampling
368
+ self.up = nn.ModuleList()
369
+ for i_level in reversed(range(self.num_resolutions)):
370
+ block = nn.ModuleList()
371
+ attn = nn.ModuleList()
372
+ block_out = ch*ch_mult[i_level]
373
+ skip_in = ch*ch_mult[i_level]
374
+ for i_block in range(self.num_res_blocks+1):
375
+ if i_block == self.num_res_blocks:
376
+ skip_in = ch*in_ch_mult[i_level]
377
+ block.append(ResnetBlock(in_channels=block_in+skip_in,
378
+ out_channels=block_out,
379
+ temb_channels=self.temb_ch,
380
+ dropout=dropout))
381
+ block_in = block_out
382
+ if curr_res in attn_resolutions:
383
+ attn.append(make_attn(block_in, attn_type=attn_type))
384
+ up = nn.Module()
385
+ up.block = block
386
+ up.attn = attn
387
+ if i_level != 0:
388
+ up.upsample = Upsample(block_in, resamp_with_conv)
389
+ curr_res = curr_res * 2
390
+ self.up.insert(0, up) # prepend to get consistent order
391
+
392
+ # end
393
+ self.norm_out = Normalize(block_in)
394
+ self.conv_out = torch.nn.Conv2d(block_in,
395
+ out_ch,
396
+ kernel_size=3,
397
+ stride=1,
398
+ padding=1)
399
+
400
+ def forward(self, x, t=None, context=None):
401
+ #assert x.shape[2] == x.shape[3] == self.resolution
402
+ if context is not None:
403
+ # assume aligned context, cat along channel axis
404
+ x = torch.cat((x, context), dim=1)
405
+ if self.use_timestep:
406
+ # timestep embedding
407
+ assert t is not None
408
+ temb = get_timestep_embedding(t, self.ch)
409
+ temb = self.temb.dense[0](temb)
410
+ temb = nonlinearity(temb)
411
+ temb = self.temb.dense[1](temb)
412
+ else:
413
+ temb = None
414
+
415
+ # downsampling
416
+ hs = [self.conv_in(x)]
417
+ for i_level in range(self.num_resolutions):
418
+ for i_block in range(self.num_res_blocks):
419
+ h = self.down[i_level].block[i_block](hs[-1], temb)
420
+ if len(self.down[i_level].attn) > 0:
421
+ h = self.down[i_level].attn[i_block](h)
422
+ hs.append(h)
423
+ if i_level != self.num_resolutions-1:
424
+ hs.append(self.down[i_level].downsample(hs[-1]))
425
+
426
+ # middle
427
+ h = hs[-1]
428
+ h = self.mid.block_1(h, temb)
429
+ h = self.mid.attn_1(h)
430
+ h = self.mid.block_2(h, temb)
431
+
432
+ # upsampling
433
+ for i_level in reversed(range(self.num_resolutions)):
434
+ for i_block in range(self.num_res_blocks+1):
435
+ h = self.up[i_level].block[i_block](
436
+ torch.cat([h, hs.pop()], dim=1), temb)
437
+ if len(self.up[i_level].attn) > 0:
438
+ h = self.up[i_level].attn[i_block](h)
439
+ if i_level != 0:
440
+ h = self.up[i_level].upsample(h)
441
+
442
+ # end
443
+ h = self.norm_out(h)
444
+ h = nonlinearity(h)
445
+ h = self.conv_out(h)
446
+ return h
447
+
448
+ def get_last_layer(self):
449
+ return self.conv_out.weight
450
+
451
+
452
+ class Encoder(nn.Module):
453
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
454
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
455
+ resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
456
+ **ignore_kwargs):
457
+ super().__init__()
458
+ if use_linear_attn: attn_type = "linear"
459
+ self.ch = ch
460
+ self.temb_ch = 0
461
+ self.num_resolutions = len(ch_mult)
462
+ self.num_res_blocks = num_res_blocks
463
+ self.resolution = resolution
464
+ self.in_channels = in_channels
465
+
466
+ # downsampling
467
+ self.conv_in = torch.nn.Conv2d(in_channels,
468
+ self.ch,
469
+ kernel_size=3,
470
+ stride=1,
471
+ padding=1)
472
+
473
+ curr_res = resolution
474
+ in_ch_mult = (1,)+tuple(ch_mult)
475
+ self.in_ch_mult = in_ch_mult
476
+ self.down = nn.ModuleList()
477
+ for i_level in range(self.num_resolutions):
478
+ block = nn.ModuleList()
479
+ attn = nn.ModuleList()
480
+ block_in = ch*in_ch_mult[i_level]
481
+ block_out = ch*ch_mult[i_level]
482
+ for i_block in range(self.num_res_blocks):
483
+ block.append(ResnetBlock(in_channels=block_in,
484
+ out_channels=block_out,
485
+ temb_channels=self.temb_ch,
486
+ dropout=dropout))
487
+ block_in = block_out
488
+ if curr_res in attn_resolutions:
489
+ attn.append(make_attn(block_in, attn_type=attn_type))
490
+ down = nn.Module()
491
+ down.block = block
492
+ down.attn = attn
493
+ if i_level != self.num_resolutions-1:
494
+ down.downsample = Downsample(block_in, resamp_with_conv)
495
+ curr_res = curr_res // 2
496
+ self.down.append(down)
497
+
498
+ # middle
499
+ self.mid = nn.Module()
500
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
501
+ out_channels=block_in,
502
+ temb_channels=self.temb_ch,
503
+ dropout=dropout)
504
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
505
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
506
+ out_channels=block_in,
507
+ temb_channels=self.temb_ch,
508
+ dropout=dropout)
509
+
510
+ # end
511
+ self.norm_out = Normalize(block_in)
512
+ self.conv_out = torch.nn.Conv2d(block_in,
513
+ 2*z_channels if double_z else z_channels,
514
+ kernel_size=3,
515
+ stride=1,
516
+ padding=1)
517
+
518
+ def forward(self, x):
519
+ # timestep embedding
520
+ temb = None
521
+
522
+ # downsampling
523
+ hs = [self.conv_in(x)]
524
+ for i_level in range(self.num_resolutions):
525
+ for i_block in range(self.num_res_blocks):
526
+ h = self.down[i_level].block[i_block](hs[-1], temb)
527
+ if len(self.down[i_level].attn) > 0:
528
+ h = self.down[i_level].attn[i_block](h)
529
+ hs.append(h)
530
+ if i_level != self.num_resolutions-1:
531
+ hs.append(self.down[i_level].downsample(hs[-1]))
532
+
533
+ # middle
534
+ h = hs[-1]
535
+ h = self.mid.block_1(h, temb)
536
+ h = self.mid.attn_1(h)
537
+ h = self.mid.block_2(h, temb)
538
+
539
+ # end
540
+ h = self.norm_out(h)
541
+ h = nonlinearity(h)
542
+ h = self.conv_out(h)
543
+ return h
544
+
545
+
546
+ class Decoder(nn.Module):
547
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
548
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
549
+ resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
550
+ attn_type="vanilla", **ignorekwargs):
551
+ super().__init__()
552
+ if use_linear_attn: attn_type = "linear"
553
+ self.ch = ch
554
+ self.temb_ch = 0
555
+ self.num_resolutions = len(ch_mult)
556
+ self.num_res_blocks = num_res_blocks
557
+ self.resolution = resolution
558
+ self.in_channels = in_channels
559
+ self.give_pre_end = give_pre_end
560
+ self.tanh_out = tanh_out
561
+
562
+ # compute in_ch_mult, block_in and curr_res at lowest res
563
+ in_ch_mult = (1,)+tuple(ch_mult)
564
+ block_in = ch*ch_mult[self.num_resolutions-1]
565
+ curr_res = resolution // 2**(self.num_resolutions-1)
566
+ self.z_shape = (1,z_channels,curr_res,curr_res)
567
+ print("Working with z of shape {} = {} dimensions.".format(
568
+ self.z_shape, np.prod(self.z_shape)))
569
+
570
+ # z to block_in
571
+ self.conv_in = torch.nn.Conv2d(z_channels,
572
+ block_in,
573
+ kernel_size=3,
574
+ stride=1,
575
+ padding=1)
576
+
577
+ # middle
578
+ self.mid = nn.Module()
579
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
580
+ out_channels=block_in,
581
+ temb_channels=self.temb_ch,
582
+ dropout=dropout)
583
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
584
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
585
+ out_channels=block_in,
586
+ temb_channels=self.temb_ch,
587
+ dropout=dropout)
588
+
589
+ # upsampling
590
+ self.up = nn.ModuleList()
591
+ for i_level in reversed(range(self.num_resolutions)):
592
+ block = nn.ModuleList()
593
+ attn = nn.ModuleList()
594
+ block_out = ch*ch_mult[i_level]
595
+ for i_block in range(self.num_res_blocks+1):
596
+ block.append(ResnetBlock(in_channels=block_in,
597
+ out_channels=block_out,
598
+ temb_channels=self.temb_ch,
599
+ dropout=dropout))
600
+ block_in = block_out
601
+ if curr_res in attn_resolutions:
602
+ attn.append(make_attn(block_in, attn_type=attn_type))
603
+ up = nn.Module()
604
+ up.block = block
605
+ up.attn = attn
606
+ if i_level != 0:
607
+ up.upsample = Upsample(block_in, resamp_with_conv)
608
+ curr_res = curr_res * 2
609
+ self.up.insert(0, up) # prepend to get consistent order
610
+
611
+ # end
612
+ self.norm_out = Normalize(block_in)
613
+ self.conv_out = torch.nn.Conv2d(block_in,
614
+ out_ch,
615
+ kernel_size=3,
616
+ stride=1,
617
+ padding=1)
618
+
619
+ def forward(self, z):
620
+ #assert z.shape[1:] == self.z_shape[1:]
621
+ self.last_z_shape = z.shape
622
+
623
+ # timestep embedding
624
+ temb = None
625
+
626
+ # z to block_in
627
+ h = self.conv_in(z)
628
+
629
+ # middle
630
+ h = self.mid.block_1(h, temb)
631
+ h = self.mid.attn_1(h)
632
+ h = self.mid.block_2(h, temb)
633
+
634
+ # upsampling
635
+ for i_level in reversed(range(self.num_resolutions)):
636
+ for i_block in range(self.num_res_blocks+1):
637
+ h = self.up[i_level].block[i_block](h, temb)
638
+ if len(self.up[i_level].attn) > 0:
639
+ h = self.up[i_level].attn[i_block](h)
640
+ if i_level != 0:
641
+ h = self.up[i_level].upsample(h)
642
+
643
+ # end
644
+ if self.give_pre_end:
645
+ return h
646
+
647
+ h = self.norm_out(h)
648
+ h = nonlinearity(h)
649
+ h = self.conv_out(h)
650
+ if self.tanh_out:
651
+ h = torch.tanh(h)
652
+ return h
653
+
654
+
655
+ class SimpleDecoder(nn.Module):
656
+ def __init__(self, in_channels, out_channels, *args, **kwargs):
657
+ super().__init__()
658
+ self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
659
+ ResnetBlock(in_channels=in_channels,
660
+ out_channels=2 * in_channels,
661
+ temb_channels=0, dropout=0.0),
662
+ ResnetBlock(in_channels=2 * in_channels,
663
+ out_channels=4 * in_channels,
664
+ temb_channels=0, dropout=0.0),
665
+ ResnetBlock(in_channels=4 * in_channels,
666
+ out_channels=2 * in_channels,
667
+ temb_channels=0, dropout=0.0),
668
+ nn.Conv2d(2*in_channels, in_channels, 1),
669
+ Upsample(in_channels, with_conv=True)])
670
+ # end
671
+ self.norm_out = Normalize(in_channels)
672
+ self.conv_out = torch.nn.Conv2d(in_channels,
673
+ out_channels,
674
+ kernel_size=3,
675
+ stride=1,
676
+ padding=1)
677
+
678
+ def forward(self, x):
679
+ for i, layer in enumerate(self.model):
680
+ if i in [1,2,3]:
681
+ x = layer(x, None)
682
+ else:
683
+ x = layer(x)
684
+
685
+ h = self.norm_out(x)
686
+ h = nonlinearity(h)
687
+ x = self.conv_out(h)
688
+ return x
689
+
690
+
691
+ class UpsampleDecoder(nn.Module):
692
+ def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
693
+ ch_mult=(2,2), dropout=0.0):
694
+ super().__init__()
695
+ # upsampling
696
+ self.temb_ch = 0
697
+ self.num_resolutions = len(ch_mult)
698
+ self.num_res_blocks = num_res_blocks
699
+ block_in = in_channels
700
+ curr_res = resolution // 2 ** (self.num_resolutions - 1)
701
+ self.res_blocks = nn.ModuleList()
702
+ self.upsample_blocks = nn.ModuleList()
703
+ for i_level in range(self.num_resolutions):
704
+ res_block = []
705
+ block_out = ch * ch_mult[i_level]
706
+ for i_block in range(self.num_res_blocks + 1):
707
+ res_block.append(ResnetBlock(in_channels=block_in,
708
+ out_channels=block_out,
709
+ temb_channels=self.temb_ch,
710
+ dropout=dropout))
711
+ block_in = block_out
712
+ self.res_blocks.append(nn.ModuleList(res_block))
713
+ if i_level != self.num_resolutions - 1:
714
+ self.upsample_blocks.append(Upsample(block_in, True))
715
+ curr_res = curr_res * 2
716
+
717
+ # end
718
+ self.norm_out = Normalize(block_in)
719
+ self.conv_out = torch.nn.Conv2d(block_in,
720
+ out_channels,
721
+ kernel_size=3,
722
+ stride=1,
723
+ padding=1)
724
+
725
+ def forward(self, x):
726
+ # upsampling
727
+ h = x
728
+ for k, i_level in enumerate(range(self.num_resolutions)):
729
+ for i_block in range(self.num_res_blocks + 1):
730
+ h = self.res_blocks[i_level][i_block](h, None)
731
+ if i_level != self.num_resolutions - 1:
732
+ h = self.upsample_blocks[k](h)
733
+ h = self.norm_out(h)
734
+ h = nonlinearity(h)
735
+ h = self.conv_out(h)
736
+ return h
737
+
738
+
739
+ class LatentRescaler(nn.Module):
740
+ def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
741
+ super().__init__()
742
+ # residual block, interpolate, residual block
743
+ self.factor = factor
744
+ self.conv_in = nn.Conv2d(in_channels,
745
+ mid_channels,
746
+ kernel_size=3,
747
+ stride=1,
748
+ padding=1)
749
+ self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
750
+ out_channels=mid_channels,
751
+ temb_channels=0,
752
+ dropout=0.0) for _ in range(depth)])
753
+ self.attn = AttnBlock(mid_channels)
754
+ self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
755
+ out_channels=mid_channels,
756
+ temb_channels=0,
757
+ dropout=0.0) for _ in range(depth)])
758
+
759
+ self.conv_out = nn.Conv2d(mid_channels,
760
+ out_channels,
761
+ kernel_size=1,
762
+ )
763
+
764
+ def forward(self, x):
765
+ x = self.conv_in(x)
766
+ for block in self.res_block1:
767
+ x = block(x, None)
768
+ x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
769
+ x = self.attn(x)
770
+ for block in self.res_block2:
771
+ x = block(x, None)
772
+ x = self.conv_out(x)
773
+ return x
774
+
775
+
776
+ class MergedRescaleEncoder(nn.Module):
777
+ def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
778
+ attn_resolutions, dropout=0.0, resamp_with_conv=True,
779
+ ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
780
+ super().__init__()
781
+ intermediate_chn = ch * ch_mult[-1]
782
+ self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
783
+ z_channels=intermediate_chn, double_z=False, resolution=resolution,
784
+ attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
785
+ out_ch=None)
786
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
787
+ mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
788
+
789
+ def forward(self, x):
790
+ x = self.encoder(x)
791
+ x = self.rescaler(x)
792
+ return x
793
+
794
+
795
+ class MergedRescaleDecoder(nn.Module):
796
+ def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
797
+ dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
798
+ super().__init__()
799
+ tmp_chn = z_channels*ch_mult[-1]
800
+ self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
801
+ resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
802
+ ch_mult=ch_mult, resolution=resolution, ch=ch)
803
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
804
+ out_channels=tmp_chn, depth=rescale_module_depth)
805
+
806
+ def forward(self, x):
807
+ x = self.rescaler(x)
808
+ x = self.decoder(x)
809
+ return x
810
+
811
+
812
+ class Upsampler(nn.Module):
813
+ def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
814
+ super().__init__()
815
+ assert out_size >= in_size
816
+ num_blocks = int(np.log2(out_size//in_size))+1
817
+ factor_up = 1.+ (out_size % in_size)
818
+ print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
819
+ self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
820
+ out_channels=in_channels)
821
+ self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
822
+ attn_resolutions=[], in_channels=None, ch=in_channels,
823
+ ch_mult=[ch_mult for _ in range(num_blocks)])
824
+
825
+ def forward(self, x):
826
+ x = self.rescaler(x)
827
+ x = self.decoder(x)
828
+ return x
829
+
830
+
831
+ class Resize(nn.Module):
832
+ def __init__(self, in_channels=None, learned=False, mode="bilinear"):
833
+ super().__init__()
834
+ self.with_conv = learned
835
+ self.mode = mode
836
+ if self.with_conv:
837
+ print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
838
+ raise NotImplementedError()
839
+ assert in_channels is not None
840
+ # no asymmetric padding in torch conv, must do it ourselves
841
+ self.conv = torch.nn.Conv2d(in_channels,
842
+ in_channels,
843
+ kernel_size=4,
844
+ stride=2,
845
+ padding=1)
846
+
847
+ def forward(self, x, scale_factor=1.0):
848
+ if scale_factor==1.0:
849
+ return x
850
+ else:
851
+ x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
852
+ return x
Control-Color/ldm/modules/diffusionmodules/openaimodel.py ADDED
@@ -0,0 +1,853 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import abstractmethod
2
+ import math
3
+
4
+ import numpy as np
5
+ import torch as th
6
+ import torch.nn as nn
7
+ import torch.nn.functional as F
8
+
9
+ from ldm.modules.diffusionmodules.util import (
10
+ checkpoint,
11
+ conv_nd,
12
+ linear,
13
+ avg_pool_nd,
14
+ zero_module,
15
+ normalization,
16
+ timestep_embedding,
17
+ )
18
+ from ldm.modules.attention import SpatialTransformer#
19
+ from ldm.modules.attention_dcn_control import SpatialTransformer_dcn
20
+ from ldm.util import exists
21
+
22
+
23
+ # dummy replace
24
+ def convert_module_to_f16(x):
25
+ pass
26
+
27
+ def convert_module_to_f32(x):
28
+ pass
29
+
30
+
31
+ ## go
32
+ class AttentionPool2d(nn.Module):
33
+ """
34
+ Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
35
+ """
36
+
37
+ def __init__(
38
+ self,
39
+ spacial_dim: int,
40
+ embed_dim: int,
41
+ num_heads_channels: int,
42
+ output_dim: int = None,
43
+ ):
44
+ super().__init__()
45
+ self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
46
+ self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
47
+ self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
48
+ self.num_heads = embed_dim // num_heads_channels
49
+ self.attention = QKVAttention(self.num_heads)
50
+
51
+ def forward(self, x):
52
+ b, c, *_spatial = x.shape
53
+ x = x.reshape(b, c, -1) # NC(HW)
54
+ x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
55
+ x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
56
+ x = self.qkv_proj(x)
57
+ x = self.attention(x)
58
+ x = self.c_proj(x)
59
+ return x[:, :, 0]
60
+
61
+
62
+ class TimestepBlock(nn.Module):
63
+ """
64
+ Any module where forward() takes timestep embeddings as a second argument.
65
+ """
66
+
67
+ @abstractmethod
68
+ def forward(self, x, emb):
69
+ """
70
+ Apply the module to `x` given `emb` timestep embeddings.
71
+ """
72
+
73
+
74
+ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
75
+ """
76
+ A sequential module that passes timestep embeddings to the children that
77
+ support it as an extra input.
78
+ """
79
+
80
+ def forward(self, x, emb, context=None):#,timestep=None,dcn_guide=None):
81
+ for layer in self:
82
+ if isinstance(layer, TimestepBlock):
83
+ x = layer(x, emb)
84
+ elif isinstance(layer, SpatialTransformer):
85
+ x = layer(x, context=context)#,timestep=timestep)
86
+ elif isinstance(layer, SpatialTransformer_dcn):
87
+ # x = layer(x, context,dcn_guide)
88
+ x = layer(x, context)
89
+ else:
90
+ x = layer(x)
91
+ return x
92
+
93
+
94
+ class Upsample(nn.Module):
95
+ """
96
+ An upsampling layer with an optional convolution.
97
+ :param channels: channels in the inputs and outputs.
98
+ :param use_conv: a bool determining if a convolution is applied.
99
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
100
+ upsampling occurs in the inner-two dimensions.
101
+ """
102
+
103
+ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
104
+ super().__init__()
105
+ self.channels = channels
106
+ self.out_channels = out_channels or channels
107
+ self.use_conv = use_conv
108
+ self.dims = dims
109
+ if use_conv:
110
+ self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
111
+
112
+ def forward(self, x):
113
+ assert x.shape[1] == self.channels
114
+ if self.dims == 3:
115
+ x = F.interpolate(
116
+ x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
117
+ )
118
+ else:
119
+ x = F.interpolate(x, scale_factor=2, mode="nearest")
120
+ if self.use_conv:
121
+ x = self.conv(x)
122
+ return x
123
+
124
+ class TransposedUpsample(nn.Module):
125
+ 'Learned 2x upsampling without padding'
126
+ def __init__(self, channels, out_channels=None, ks=5):
127
+ super().__init__()
128
+ self.channels = channels
129
+ self.out_channels = out_channels or channels
130
+
131
+ self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
132
+
133
+ def forward(self,x):
134
+ return self.up(x)
135
+
136
+
137
+ class Downsample(nn.Module):
138
+ """
139
+ A downsampling layer with an optional convolution.
140
+ :param channels: channels in the inputs and outputs.
141
+ :param use_conv: a bool determining if a convolution is applied.
142
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
143
+ downsampling occurs in the inner-two dimensions.
144
+ """
145
+
146
+ def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
147
+ super().__init__()
148
+ self.channels = channels
149
+ self.out_channels = out_channels or channels
150
+ self.use_conv = use_conv
151
+ self.dims = dims
152
+ stride = 2 if dims != 3 else (1, 2, 2)
153
+ if use_conv:
154
+ self.op = conv_nd(
155
+ dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
156
+ )
157
+ else:
158
+ assert self.channels == self.out_channels
159
+ self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
160
+
161
+ def forward(self, x):
162
+ assert x.shape[1] == self.channels
163
+ return self.op(x)
164
+
165
+
166
+ class ResBlock(TimestepBlock):
167
+ """
168
+ A residual block that can optionally change the number of channels.
169
+ :param channels: the number of input channels.
170
+ :param emb_channels: the number of timestep embedding channels.
171
+ :param dropout: the rate of dropout.
172
+ :param out_channels: if specified, the number of out channels.
173
+ :param use_conv: if True and out_channels is specified, use a spatial
174
+ convolution instead of a smaller 1x1 convolution to change the
175
+ channels in the skip connection.
176
+ :param dims: determines if the signal is 1D, 2D, or 3D.
177
+ :param use_checkpoint: if True, use gradient checkpointing on this module.
178
+ :param up: if True, use this block for upsampling.
179
+ :param down: if True, use this block for downsampling.
180
+ """
181
+
182
+ def __init__(
183
+ self,
184
+ channels,
185
+ emb_channels,
186
+ dropout,
187
+ out_channels=None,
188
+ use_conv=False,
189
+ use_scale_shift_norm=False,
190
+ dims=2,
191
+ use_checkpoint=False,
192
+ up=False,
193
+ down=False,
194
+ ):
195
+ super().__init__()
196
+ self.channels = channels
197
+ self.emb_channels = emb_channels
198
+ self.dropout = dropout
199
+ self.out_channels = out_channels or channels
200
+ self.use_conv = use_conv
201
+ self.use_checkpoint = use_checkpoint
202
+ self.use_scale_shift_norm = use_scale_shift_norm
203
+
204
+ self.in_layers = nn.Sequential(
205
+ normalization(channels),
206
+ nn.SiLU(),
207
+ conv_nd(dims, channels, self.out_channels, 3, padding=1),
208
+ )
209
+
210
+ self.updown = up or down
211
+
212
+ if up:
213
+ self.h_upd = Upsample(channels, False, dims)
214
+ self.x_upd = Upsample(channels, False, dims)
215
+ elif down:
216
+ self.h_upd = Downsample(channels, False, dims)
217
+ self.x_upd = Downsample(channels, False, dims)
218
+ else:
219
+ self.h_upd = self.x_upd = nn.Identity()
220
+
221
+ self.emb_layers = nn.Sequential(
222
+ nn.SiLU(),
223
+ linear(
224
+ emb_channels,
225
+ 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
226
+ ),
227
+ )
228
+ self.out_layers = nn.Sequential(
229
+ normalization(self.out_channels),
230
+ nn.SiLU(),
231
+ nn.Dropout(p=dropout),
232
+ zero_module(
233
+ conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
234
+ ),
235
+ )
236
+
237
+ if self.out_channels == channels:
238
+ self.skip_connection = nn.Identity()
239
+ elif use_conv:
240
+ self.skip_connection = conv_nd(
241
+ dims, channels, self.out_channels, 3, padding=1
242
+ )
243
+ else:
244
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
245
+
246
+ def forward(self, x, emb):
247
+ """
248
+ Apply the block to a Tensor, conditioned on a timestep embedding.
249
+ :param x: an [N x C x ...] Tensor of features.
250
+ :param emb: an [N x emb_channels] Tensor of timestep embeddings.
251
+ :return: an [N x C x ...] Tensor of outputs.
252
+ """
253
+ return checkpoint(
254
+ self._forward, (x, emb), self.parameters(), self.use_checkpoint
255
+ )
256
+
257
+
258
+ def _forward(self, x, emb):
259
+ if self.updown:
260
+ in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
261
+ h = in_rest(x)
262
+ h = self.h_upd(h)
263
+ x = self.x_upd(x)
264
+ h = in_conv(h)
265
+ else:
266
+ h = self.in_layers(x)
267
+ emb_out = self.emb_layers(emb).type(h.dtype)
268
+ while len(emb_out.shape) < len(h.shape):
269
+ emb_out = emb_out[..., None]
270
+ if self.use_scale_shift_norm:
271
+ out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
272
+ scale, shift = th.chunk(emb_out, 2, dim=1)
273
+ h = out_norm(h) * (1 + scale) + shift
274
+ h = out_rest(h)
275
+ else:
276
+ h = h + emb_out
277
+ h = self.out_layers(h)
278
+ return self.skip_connection(x) + h
279
+
280
+
281
+ class AttentionBlock(nn.Module):
282
+ """
283
+ An attention block that allows spatial positions to attend to each other.
284
+ Originally ported from here, but adapted to the N-d case.
285
+ https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
286
+ """
287
+
288
+ def __init__(
289
+ self,
290
+ channels,
291
+ num_heads=1,
292
+ num_head_channels=-1,
293
+ use_checkpoint=False,
294
+ use_new_attention_order=False,
295
+ ):
296
+ super().__init__()
297
+ self.channels = channels
298
+ if num_head_channels == -1:
299
+ self.num_heads = num_heads
300
+ else:
301
+ assert (
302
+ channels % num_head_channels == 0
303
+ ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
304
+ self.num_heads = channels // num_head_channels
305
+ self.use_checkpoint = use_checkpoint
306
+ self.norm = normalization(channels)
307
+ self.qkv = conv_nd(1, channels, channels * 3, 1)
308
+ if use_new_attention_order:
309
+ # split qkv before split heads
310
+ self.attention = QKVAttention(self.num_heads)
311
+ else:
312
+ # split heads before split qkv
313
+ self.attention = QKVAttentionLegacy(self.num_heads)
314
+
315
+ self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
316
+ # self.cnnhead = CnnHead(512,num_classes=32,window_size=channels)
317
+ def forward(self, x):
318
+ return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
319
+ #return pt_checkpoint(self._forward, x) # pytorch
320
+
321
+ def _forward(self, x):
322
+ b, c, *spatial = x.shape
323
+ x = x.reshape(b, c, -1)
324
+ qkv = self.qkv(self.norm(x))
325
+ h = self.attention(qkv)
326
+ h = self.proj_out(h)
327
+ # h = self.cnnhead(h)
328
+ return (x + h).reshape(b, c, *spatial)
329
+
330
+
331
+ def count_flops_attn(model, _x, y):
332
+ """
333
+ A counter for the `thop` package to count the operations in an
334
+ attention operation.
335
+ Meant to be used like:
336
+ macs, params = thop.profile(
337
+ model,
338
+ inputs=(inputs, timestamps),
339
+ custom_ops={QKVAttention: QKVAttention.count_flops},
340
+ )
341
+ """
342
+ b, c, *spatial = y[0].shape
343
+ num_spatial = int(np.prod(spatial))
344
+ # We perform two matmuls with the same number of ops.
345
+ # The first computes the weight matrix, the second computes
346
+ # the combination of the value vectors.
347
+ matmul_ops = 2 * b * (num_spatial ** 2) * c
348
+ model.total_ops += th.DoubleTensor([matmul_ops])
349
+
350
+
351
+ class QKVAttentionLegacy(nn.Module):
352
+ """
353
+ A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
354
+ """
355
+
356
+ def __init__(self, n_heads):
357
+ super().__init__()
358
+ self.n_heads = n_heads
359
+
360
+ def forward(self, qkv):
361
+ """
362
+ Apply QKV attention.
363
+ :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
364
+ :return: an [N x (H * C) x T] tensor after attention.
365
+ """
366
+ bs, width, length = qkv.shape
367
+ assert width % (3 * self.n_heads) == 0
368
+ ch = width // (3 * self.n_heads)
369
+ q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
370
+ scale = 1 / math.sqrt(math.sqrt(ch))
371
+ weight = th.einsum(
372
+ "bct,bcs->bts", q * scale, k * scale
373
+ ) # More stable with f16 than dividing afterwards
374
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
375
+ a = th.einsum("bts,bcs->bct", weight, v)
376
+ return a.reshape(bs, -1, length)
377
+
378
+ @staticmethod
379
+ def count_flops(model, _x, y):
380
+ return count_flops_attn(model, _x, y)
381
+
382
+
383
+ class QKVAttention(nn.Module):
384
+ """
385
+ A module which performs QKV attention and splits in a different order.
386
+ """
387
+
388
+ def __init__(self, n_heads):
389
+ super().__init__()
390
+ self.n_heads = n_heads
391
+
392
+ def forward(self, qkv):
393
+ """
394
+ Apply QKV attention.
395
+ :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
396
+ :return: an [N x (H * C) x T] tensor after attention.
397
+ """
398
+ bs, width, length = qkv.shape
399
+ assert width % (3 * self.n_heads) == 0
400
+ ch = width // (3 * self.n_heads)
401
+ q, k, v = qkv.chunk(3, dim=1)
402
+ scale = 1 / math.sqrt(math.sqrt(ch))
403
+ weight = th.einsum(
404
+ "bct,bcs->bts",
405
+ (q * scale).view(bs * self.n_heads, ch, length),
406
+ (k * scale).view(bs * self.n_heads, ch, length),
407
+ ) # More stable with f16 than dividing afterwards
408
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
409
+ a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
410
+ return a.reshape(bs, -1, length)
411
+
412
+ @staticmethod
413
+ def count_flops(model, _x, y):
414
+ return count_flops_attn(model, _x, y)
415
+
416
+ # class ModulatedDeformConv(nn.Module):
417
+ # """A ModulatedDeformable Conv Encapsulation that acts as normal Conv layers.
418
+
419
+ # Args:
420
+ # in_channels (int): Same as nn.Conv2d.
421
+ # out_channels (int): Same as nn.Conv2d.
422
+ # kernel_size (int or tuple[int]): Same as nn.Conv2d.
423
+ # stride (int or tuple[int]): Same as nn.Conv2d.
424
+ # padding (int or tuple[int]): Same as nn.Conv2d.
425
+ # dilation (int or tuple[int]): Same as nn.Conv2d.
426
+ # groups (int): Same as nn.Conv2d.
427
+ # bias (bool or str): If specified as `auto`, it will be decided by the
428
+ # norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
429
+ # False.
430
+ # """
431
+
432
+ # _version = 2
433
+
434
+ # def __init__(self, *args, **kwargs):
435
+ # super(ModulatedDeformConv, self).__init__(*args, **kwargs)
436
+
437
+ # self.conv_offset = nn.Conv2d(
438
+ # self.in_channels,
439
+ # self.deformable_groups * 3 * self.kernel_size[0] * self.kernel_size[1],
440
+ # kernel_size=self.kernel_size,
441
+ # stride=_pair(self.stride),
442
+ # padding=_pair(self.padding),
443
+ # dilation=_pair(self.dilation),
444
+ # bias=True)
445
+ # self.init_weights()
446
+
447
+ # def init_weights(self):
448
+ # super(ModulatedDeformConv, self).init_weights()
449
+ # if hasattr(self, 'conv_offset'):
450
+ # self.conv_offset.weight.data.zero_()
451
+ # self.conv_offset.bias.data.zero_()
452
+
453
+ # def forward(self, x):
454
+ # out = self.conv_offset(x)
455
+ # o1, o2, mask = th.chunk(out, 3, dim=1)
456
+ # offset = th.cat((o1, o2), dim=1)
457
+ # mask = th.sigmoid(mask)
458
+ # return nn.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding, self.dilation,mask,
459
+ # self.groups, self.deformable_groups)
460
+
461
+ from einops import rearrange
462
+ class CnnHead(nn.Module):
463
+ def __init__(self, embed_dim, num_classes, window_size):
464
+ super().__init__()
465
+ self.embed_dim = embed_dim
466
+ self.num_classes = num_classes
467
+ self.window_size = window_size
468
+
469
+ self.cnnhead = nn.Conv2d(embed_dim, num_classes, kernel_size=3, stride=1, padding=1, padding_mode='reflect')
470
+
471
+ def forward(self, x):
472
+ x = rearrange(x, 'b (p1 p2) c -> b c p1 p2', p1=self.window_size, p2=self.window_size)
473
+ x = self.cnnhead(x)
474
+ x = rearrange(x, 'b c p1 p2 -> b (p1 p2) c')
475
+ return x
476
+
477
+ class UNetModel(nn.Module):
478
+ """
479
+ The full UNet model with attention and timestep embedding.
480
+ :param in_channels: channels in the input Tensor.
481
+ :param model_channels: base channel count for the model.
482
+ :param out_channels: channels in the output Tensor.
483
+ :param num_res_blocks: number of residual blocks per downsample.
484
+ :param attention_resolutions: a collection of downsample rates at which
485
+ attention will take place. May be a set, list, or tuple.
486
+ For example, if this contains 4, then at 4x downsampling, attention
487
+ will be used.
488
+ :param dropout: the dropout probability.
489
+ :param channel_mult: channel multiplier for each level of the UNet.
490
+ :param conv_resample: if True, use learned convolutions for upsampling and
491
+ downsampling.
492
+ :param dims: determines if the signal is 1D, 2D, or 3D.
493
+ :param num_classes: if specified (as an int), then this model will be
494
+ class-conditional with `num_classes` classes.
495
+ :param use_checkpoint: use gradient checkpointing to reduce memory usage.
496
+ :param num_heads: the number of attention heads in each attention layer.
497
+ :param num_heads_channels: if specified, ignore num_heads and instead use
498
+ a fixed channel width per attention head.
499
+ :param num_heads_upsample: works with num_heads to set a different number
500
+ of heads for upsampling. Deprecated.
501
+ :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
502
+ :param resblock_updown: use residual blocks for up/downsampling.
503
+ :param use_new_attention_order: use a different attention pattern for potentially
504
+ increased efficiency.
505
+ """
506
+
507
+ def __init__(
508
+ self,
509
+ image_size,
510
+ in_channels,
511
+ model_channels,
512
+ out_channels,
513
+ num_res_blocks,
514
+ attention_resolutions,
515
+ dropout=0,
516
+ channel_mult=(1, 2, 4, 8),
517
+ conv_resample=True,
518
+ dims=2,
519
+ num_classes=None,
520
+ use_checkpoint=False,
521
+ use_fp16=False,
522
+ num_heads=-1,
523
+ num_head_channels=-1,
524
+ num_heads_upsample=-1,
525
+ use_scale_shift_norm=False,
526
+ resblock_updown=False,
527
+ use_new_attention_order=False,
528
+ use_spatial_transformer=False, # custom transformer support
529
+ transformer_depth=1, # custom transformer support
530
+ context_dim=None, # custom transformer support
531
+ n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
532
+ legacy=True,
533
+ disable_self_attentions=None,
534
+ num_attention_blocks=None,
535
+ disable_middle_self_attn=False,
536
+ use_linear_in_transformer=False,
537
+ ):
538
+ super().__init__()
539
+ if use_spatial_transformer:
540
+ assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
541
+
542
+ if context_dim is not None:
543
+ assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
544
+ from omegaconf.listconfig import ListConfig
545
+ if type(context_dim) == ListConfig:
546
+ context_dim = list(context_dim)
547
+
548
+ if num_heads_upsample == -1:
549
+ num_heads_upsample = num_heads
550
+
551
+ if num_heads == -1:
552
+ assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
553
+
554
+ if num_head_channels == -1:
555
+ assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
556
+
557
+ self.image_size = image_size
558
+ self.in_channels = in_channels
559
+ self.model_channels = model_channels
560
+ self.out_channels = out_channels
561
+ if isinstance(num_res_blocks, int):
562
+ self.num_res_blocks = len(channel_mult) * [num_res_blocks]
563
+ else:
564
+ if len(num_res_blocks) != len(channel_mult):
565
+ raise ValueError("provide num_res_blocks either as an int (globally constant) or "
566
+ "as a list/tuple (per-level) with the same length as channel_mult")
567
+ self.num_res_blocks = num_res_blocks
568
+ if disable_self_attentions is not None:
569
+ # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
570
+ assert len(disable_self_attentions) == len(channel_mult)
571
+ if num_attention_blocks is not None:
572
+ assert len(num_attention_blocks) == len(self.num_res_blocks)
573
+ assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
574
+ print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
575
+ f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
576
+ f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
577
+ f"attention will still not be set.")
578
+
579
+ self.attention_resolutions = attention_resolutions
580
+ self.dropout = dropout
581
+ self.channel_mult = channel_mult
582
+ self.conv_resample = conv_resample
583
+ self.num_classes = num_classes
584
+ self.use_checkpoint = use_checkpoint
585
+ self.dtype = th.float16 if use_fp16 else th.float32
586
+ self.num_heads = num_heads
587
+ self.num_head_channels = num_head_channels
588
+ self.num_heads_upsample = num_heads_upsample
589
+ self.predict_codebook_ids = n_embed is not None
590
+
591
+ time_embed_dim = model_channels * 4
592
+ self.time_embed = nn.Sequential(
593
+ linear(model_channels, time_embed_dim),
594
+ nn.SiLU(),
595
+ linear(time_embed_dim, time_embed_dim),
596
+ )
597
+
598
+ if self.num_classes is not None:
599
+ if isinstance(self.num_classes, int):
600
+ self.label_emb = nn.Embedding(num_classes, time_embed_dim)
601
+ elif self.num_classes == "continuous":
602
+ print("setting up linear c_adm embedding layer")
603
+ self.label_emb = nn.Linear(1, time_embed_dim)
604
+ else:
605
+ raise ValueError()
606
+
607
+ self.input_blocks = nn.ModuleList(
608
+ [
609
+ TimestepEmbedSequential(
610
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)
611
+ )
612
+ ]
613
+ )
614
+ self._feature_size = model_channels
615
+ input_block_chans = [model_channels]
616
+ ch = model_channels
617
+ ds = 1
618
+ for level, mult in enumerate(channel_mult):
619
+ for nr in range(self.num_res_blocks[level]):
620
+ layers = [
621
+ ResBlock(
622
+ ch,
623
+ time_embed_dim,
624
+ dropout,
625
+ out_channels=mult * model_channels,
626
+ dims=dims,
627
+ use_checkpoint=use_checkpoint,
628
+ use_scale_shift_norm=use_scale_shift_norm,
629
+ )
630
+ ]
631
+ ch = mult * model_channels
632
+ if ds in attention_resolutions:
633
+ if num_head_channels == -1:
634
+ dim_head = ch // num_heads
635
+ else:
636
+ num_heads = ch // num_head_channels
637
+ dim_head = num_head_channels
638
+ if legacy:
639
+ #num_heads = 1
640
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
641
+ if exists(disable_self_attentions):
642
+ disabled_sa = disable_self_attentions[level]
643
+ else:
644
+ disabled_sa = False
645
+
646
+ if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
647
+ layers.append(
648
+ AttentionBlock(
649
+ ch,
650
+ use_checkpoint=use_checkpoint,
651
+ num_heads=num_heads,
652
+ num_head_channels=dim_head,
653
+ use_new_attention_order=use_new_attention_order,
654
+ ) if not use_spatial_transformer else SpatialTransformer(
655
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
656
+ disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
657
+ use_checkpoint=use_checkpoint
658
+ )
659
+ )
660
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
661
+ self._feature_size += ch
662
+ input_block_chans.append(ch)
663
+ if level != len(channel_mult) - 1:
664
+ out_ch = ch
665
+ self.input_blocks.append(
666
+ TimestepEmbedSequential(
667
+ ResBlock(
668
+ ch,
669
+ time_embed_dim,
670
+ dropout,
671
+ out_channels=out_ch,
672
+ dims=dims,
673
+ use_checkpoint=use_checkpoint,
674
+ use_scale_shift_norm=use_scale_shift_norm,
675
+ down=True,
676
+ )
677
+ if resblock_updown
678
+ else Downsample(
679
+ ch, conv_resample, dims=dims, out_channels=out_ch
680
+ )
681
+ )
682
+ )
683
+ ch = out_ch
684
+ input_block_chans.append(ch)
685
+ ds *= 2
686
+ self._feature_size += ch
687
+
688
+ if num_head_channels == -1:
689
+ dim_head = ch // num_heads
690
+ else:
691
+ num_heads = ch // num_head_channels
692
+ dim_head = num_head_channels
693
+ if legacy:
694
+ #num_heads = 1
695
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
696
+ self.middle_block = TimestepEmbedSequential(
697
+ ResBlock(
698
+ ch,
699
+ time_embed_dim,
700
+ dropout,
701
+ dims=dims,
702
+ use_checkpoint=use_checkpoint,
703
+ use_scale_shift_norm=use_scale_shift_norm,
704
+ ),
705
+ AttentionBlock(
706
+ ch,
707
+ use_checkpoint=use_checkpoint,
708
+ num_heads=num_heads,
709
+ num_head_channels=dim_head,
710
+ use_new_attention_order=use_new_attention_order,
711
+ ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
712
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
713
+ disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
714
+ use_checkpoint=use_checkpoint
715
+ ),
716
+ ResBlock(
717
+ ch,
718
+ time_embed_dim,
719
+ dropout,
720
+ dims=dims,
721
+ use_checkpoint=use_checkpoint,
722
+ use_scale_shift_norm=use_scale_shift_norm,
723
+ ),
724
+ )
725
+ self._feature_size += ch
726
+
727
+ self.output_blocks = nn.ModuleList([])
728
+ for level, mult in list(enumerate(channel_mult))[::-1]:
729
+ for i in range(self.num_res_blocks[level] + 1):
730
+ ich = input_block_chans.pop()
731
+ layers = [
732
+ ResBlock(
733
+ ch + ich,
734
+ time_embed_dim,
735
+ dropout,
736
+ out_channels=model_channels * mult,
737
+ dims=dims,
738
+ use_checkpoint=use_checkpoint,
739
+ use_scale_shift_norm=use_scale_shift_norm,
740
+ )
741
+ ]
742
+ ch = model_channels * mult
743
+ if ds in attention_resolutions:
744
+ if num_head_channels == -1:
745
+ dim_head = ch // num_heads
746
+ else:
747
+ num_heads = ch // num_head_channels
748
+ dim_head = num_head_channels
749
+ if legacy:
750
+ #num_heads = 1
751
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
752
+ if exists(disable_self_attentions):
753
+ disabled_sa = disable_self_attentions[level]
754
+ else:
755
+ disabled_sa = False
756
+
757
+ if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
758
+ layers.append(
759
+ AttentionBlock(
760
+ ch,
761
+ use_checkpoint=use_checkpoint,
762
+ num_heads=num_heads_upsample,
763
+ num_head_channels=dim_head,
764
+ use_new_attention_order=use_new_attention_order,
765
+ ) if not use_spatial_transformer else SpatialTransformer(
766
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
767
+ disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
768
+ use_checkpoint=use_checkpoint
769
+ )
770
+ )
771
+ # layers.append(CnnHead(ch, ch, window_size=ch // 8))
772
+ if level and i == self.num_res_blocks[level]:
773
+ out_ch = ch
774
+ layers.append(
775
+ ResBlock(
776
+ ch,
777
+ time_embed_dim,
778
+ dropout,
779
+ out_channels=out_ch,
780
+ dims=dims,
781
+ use_checkpoint=use_checkpoint,
782
+ use_scale_shift_norm=use_scale_shift_norm,
783
+ up=True,
784
+ )
785
+ if resblock_updown
786
+ else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
787
+ )
788
+ # layers.append(CnnHead(ch, ch, window_size=ch // 8))
789
+ ds //= 2
790
+ self.output_blocks.append(TimestepEmbedSequential(*layers))
791
+ self._feature_size += ch
792
+
793
+ self.out = nn.Sequential(
794
+ normalization(ch),
795
+ nn.SiLU(),
796
+ zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
797
+ )
798
+ if self.predict_codebook_ids:
799
+ self.id_predictor = nn.Sequential(
800
+ normalization(ch),
801
+ conv_nd(dims, model_channels, n_embed, 1),
802
+ #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
803
+ )
804
+
805
+ def convert_to_fp16(self):
806
+ """
807
+ Convert the torso of the model to float16.
808
+ """
809
+ self.input_blocks.apply(convert_module_to_f16)
810
+ self.middle_block.apply(convert_module_to_f16)
811
+ self.output_blocks.apply(convert_module_to_f16)
812
+
813
+ def convert_to_fp32(self):
814
+ """
815
+ Convert the torso of the model to float32.
816
+ """
817
+ self.input_blocks.apply(convert_module_to_f32)
818
+ self.middle_block.apply(convert_module_to_f32)
819
+ self.output_blocks.apply(convert_module_to_f32)
820
+
821
+ def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
822
+ """
823
+ Apply the model to an input batch.
824
+ :param x: an [N x C x ...] Tensor of inputs.
825
+ :param timesteps: a 1-D batch of timesteps.
826
+ :param context: conditioning plugged in via crossattn
827
+ :param y: an [N] Tensor of labels, if class-conditional.
828
+ :return: an [N x C x ...] Tensor of outputs.
829
+ """
830
+ assert (y is not None) == (
831
+ self.num_classes is not None
832
+ ), "must specify y if and only if the model is class-conditional"
833
+ hs = []
834
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
835
+ emb = self.time_embed(t_emb)
836
+
837
+ if self.num_classes is not None:
838
+ assert y.shape[0] == x.shape[0]
839
+ emb = emb + self.label_emb(y)
840
+
841
+ h = x.type(self.dtype)
842
+ for module in self.input_blocks:
843
+ h = module(h, emb, context)
844
+ hs.append(h)
845
+ h = self.middle_block(h, emb, context)
846
+ for module in self.output_blocks:
847
+ h = th.cat([h, hs.pop()], dim=1)
848
+ h = module(h, emb, context)
849
+ h = h.type(x.dtype)
850
+ if self.predict_codebook_ids:
851
+ return self.id_predictor(h)
852
+ else:
853
+ return self.out(h)
Control-Color/ldm/modules/diffusionmodules/util.py ADDED
@@ -0,0 +1,270 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # adopted from
2
+ # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
3
+ # and
4
+ # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
5
+ # and
6
+ # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
7
+ #
8
+ # thanks!
9
+
10
+
11
+ import os
12
+ import math
13
+ import torch
14
+ import torch.nn as nn
15
+ import numpy as np
16
+ from einops import repeat
17
+
18
+ from ldm.util import instantiate_from_config
19
+
20
+
21
+ def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
22
+ if schedule == "linear":
23
+ betas = (
24
+ torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
25
+ )
26
+
27
+ elif schedule == "cosine":
28
+ timesteps = (
29
+ torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
30
+ )
31
+ alphas = timesteps / (1 + cosine_s) * np.pi / 2
32
+ alphas = torch.cos(alphas).pow(2)
33
+ alphas = alphas / alphas[0]
34
+ betas = 1 - alphas[1:] / alphas[:-1]
35
+ betas = np.clip(betas, a_min=0, a_max=0.999)
36
+
37
+ elif schedule == "sqrt_linear":
38
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
39
+ elif schedule == "sqrt":
40
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
41
+ else:
42
+ raise ValueError(f"schedule '{schedule}' unknown.")
43
+ return betas.numpy()
44
+
45
+
46
+ def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
47
+ if ddim_discr_method == 'uniform':
48
+ c = num_ddpm_timesteps // num_ddim_timesteps
49
+ ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
50
+ elif ddim_discr_method == 'quad':
51
+ ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
52
+ else:
53
+ raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
54
+
55
+ # assert ddim_timesteps.shape[0] == num_ddim_timesteps
56
+ # add one to get the final alpha values right (the ones from first scale to data during sampling)
57
+ steps_out = ddim_timesteps + 1
58
+ if verbose:
59
+ print(f'Selected timesteps for ddim sampler: {steps_out}')
60
+ return steps_out
61
+
62
+
63
+ def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
64
+ # select alphas for computing the variance schedule
65
+ alphas = alphacums[ddim_timesteps]
66
+ alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
67
+
68
+ # according the the formula provided in https://arxiv.org/abs/2010.02502
69
+ sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
70
+ if verbose:
71
+ print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
72
+ print(f'For the chosen value of eta, which is {eta}, '
73
+ f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
74
+ return sigmas, alphas, alphas_prev
75
+
76
+
77
+ def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
78
+ """
79
+ Create a beta schedule that discretizes the given alpha_t_bar function,
80
+ which defines the cumulative product of (1-beta) over time from t = [0,1].
81
+ :param num_diffusion_timesteps: the number of betas to produce.
82
+ :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
83
+ produces the cumulative product of (1-beta) up to that
84
+ part of the diffusion process.
85
+ :param max_beta: the maximum beta to use; use values lower than 1 to
86
+ prevent singularities.
87
+ """
88
+ betas = []
89
+ for i in range(num_diffusion_timesteps):
90
+ t1 = i / num_diffusion_timesteps
91
+ t2 = (i + 1) / num_diffusion_timesteps
92
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
93
+ return np.array(betas)
94
+
95
+
96
+ def extract_into_tensor(a, t, x_shape):
97
+ b, *_ = t.shape
98
+ out = a.gather(-1, t)
99
+ return out.reshape(b, *((1,) * (len(x_shape) - 1)))
100
+
101
+
102
+ def checkpoint(func, inputs, params, flag):
103
+ """
104
+ Evaluate a function without caching intermediate activations, allowing for
105
+ reduced memory at the expense of extra compute in the backward pass.
106
+ :param func: the function to evaluate.
107
+ :param inputs: the argument sequence to pass to `func`.
108
+ :param params: a sequence of parameters `func` depends on but does not
109
+ explicitly take as arguments.
110
+ :param flag: if False, disable gradient checkpointing.
111
+ """
112
+ if flag:
113
+ args = tuple(inputs) + tuple(params)
114
+ return CheckpointFunction.apply(func, len(inputs), *args)
115
+ else:
116
+ return func(*inputs)
117
+
118
+
119
+ class CheckpointFunction(torch.autograd.Function):
120
+ @staticmethod
121
+ def forward(ctx, run_function, length, *args):
122
+ ctx.run_function = run_function
123
+ ctx.input_tensors = list(args[:length])
124
+ ctx.input_params = list(args[length:])
125
+ ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(),
126
+ "dtype": torch.get_autocast_gpu_dtype(),
127
+ "cache_enabled": torch.is_autocast_cache_enabled()}
128
+ with torch.no_grad():
129
+ output_tensors = ctx.run_function(*ctx.input_tensors)
130
+ return output_tensors
131
+
132
+ @staticmethod
133
+ def backward(ctx, *output_grads):
134
+ ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
135
+ with torch.enable_grad(), \
136
+ torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
137
+ # Fixes a bug where the first op in run_function modifies the
138
+ # Tensor storage in place, which is not allowed for detach()'d
139
+ # Tensors.
140
+ shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
141
+ output_tensors = ctx.run_function(*shallow_copies)
142
+ input_grads = torch.autograd.grad(
143
+ output_tensors,
144
+ ctx.input_tensors + ctx.input_params,
145
+ output_grads,
146
+ allow_unused=True,
147
+ )
148
+ del ctx.input_tensors
149
+ del ctx.input_params
150
+ del output_tensors
151
+ return (None, None) + input_grads
152
+
153
+
154
+ def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
155
+ """
156
+ Create sinusoidal timestep embeddings.
157
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
158
+ These may be fractional.
159
+ :param dim: the dimension of the output.
160
+ :param max_period: controls the minimum frequency of the embeddings.
161
+ :return: an [N x dim] Tensor of positional embeddings.
162
+ """
163
+ if not repeat_only:
164
+ half = dim // 2
165
+ freqs = torch.exp(
166
+ -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
167
+ ).to(device=timesteps.device)
168
+ args = timesteps[:, None].float() * freqs[None]
169
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
170
+ if dim % 2:
171
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
172
+ else:
173
+ embedding = repeat(timesteps, 'b -> b d', d=dim)
174
+ return embedding
175
+
176
+
177
+ def zero_module(module):
178
+ """
179
+ Zero out the parameters of a module and return it.
180
+ """
181
+ for p in module.parameters():
182
+ p.detach().zero_()
183
+ return module
184
+
185
+
186
+ def scale_module(module, scale):
187
+ """
188
+ Scale the parameters of a module and return it.
189
+ """
190
+ for p in module.parameters():
191
+ p.detach().mul_(scale)
192
+ return module
193
+
194
+
195
+ def mean_flat(tensor):
196
+ """
197
+ Take the mean over all non-batch dimensions.
198
+ """
199
+ return tensor.mean(dim=list(range(1, len(tensor.shape))))
200
+
201
+
202
+ def normalization(channels):
203
+ """
204
+ Make a standard normalization layer.
205
+ :param channels: number of input channels.
206
+ :return: an nn.Module for normalization.
207
+ """
208
+ return GroupNorm32(32, channels)
209
+
210
+
211
+ # PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
212
+ class SiLU(nn.Module):
213
+ def forward(self, x):
214
+ return x * torch.sigmoid(x)
215
+
216
+
217
+ class GroupNorm32(nn.GroupNorm):
218
+ def forward(self, x):
219
+ return super().forward(x.float()).type(x.dtype)
220
+
221
+ def conv_nd(dims, *args, **kwargs):
222
+ """
223
+ Create a 1D, 2D, or 3D convolution module.
224
+ """
225
+ if dims == 1:
226
+ return nn.Conv1d(*args, **kwargs)
227
+ elif dims == 2:
228
+ return nn.Conv2d(*args, **kwargs)
229
+ elif dims == 3:
230
+ return nn.Conv3d(*args, **kwargs)
231
+ raise ValueError(f"unsupported dimensions: {dims}")
232
+
233
+
234
+ def linear(*args, **kwargs):
235
+ """
236
+ Create a linear module.
237
+ """
238
+ return nn.Linear(*args, **kwargs)
239
+
240
+
241
+ def avg_pool_nd(dims, *args, **kwargs):
242
+ """
243
+ Create a 1D, 2D, or 3D average pooling module.
244
+ """
245
+ if dims == 1:
246
+ return nn.AvgPool1d(*args, **kwargs)
247
+ elif dims == 2:
248
+ return nn.AvgPool2d(*args, **kwargs)
249
+ elif dims == 3:
250
+ return nn.AvgPool3d(*args, **kwargs)
251
+ raise ValueError(f"unsupported dimensions: {dims}")
252
+
253
+
254
+ class HybridConditioner(nn.Module):
255
+
256
+ def __init__(self, c_concat_config, c_crossattn_config):
257
+ super().__init__()
258
+ self.concat_conditioner = instantiate_from_config(c_concat_config)
259
+ self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
260
+
261
+ def forward(self, c_concat, c_crossattn):
262
+ c_concat = self.concat_conditioner(c_concat)
263
+ c_crossattn = self.crossattn_conditioner(c_crossattn)
264
+ return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
265
+
266
+
267
+ def noise_like(shape, device, repeat=False):
268
+ repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
269
+ noise = lambda: torch.randn(shape, device=device)
270
+ return repeat_noise() if repeat else noise()
Control-Color/ldm/modules/distributions/__init__.py ADDED
File without changes