Spaces:
Running
Running
import os | |
import cv2 | |
import tempfile | |
from modelscope.outputs import OutputKeys | |
from modelscope.pipelines import pipeline | |
from modelscope.utils.constant import Tasks | |
import PIL | |
from pathlib import Path | |
import gradio as gr | |
import numpy as np | |
"""Load the model into memory to make running multiple predictions efficient""" | |
img_colorization = pipeline(Tasks.image_colorization, model='iic/cv_ddcolor_image-colorization') | |
def inference(img): | |
image = cv2.imread(str(img)) | |
output = img_colorization(image[..., ::-1]) | |
result = output[OutputKeys.OUTPUT_IMG].astype(np.uint8) | |
temp_dir = tempfile.mkdtemp() | |
out_path = os.path.join(temp_dir, 'old-to-color.png') | |
cv2.imwrite(out_path, result) | |
return Path(out_path) | |
title = "Color Restorization Model" | |
gr.Interface( | |
inference, | |
[gr.inputs.Image(type="filepath", label="Input")], | |
gr.outputs.Image(type="pil", label="Output"), | |
title=title | |
).launch(enable_queue=True) | |