File size: 3,685 Bytes
fd1dd45 e158b55 c2aa8fe e158b55 61d589d e158b55 597a3e1 e158b55 b16d75f e158b55 597a3e1 e158b55 d3036fa 6eeaadf d3036fa e158b55 b16d75f bb4cd3c fd1dd45 4ae11c9 fd1dd45 d3036fa fd1dd45 b16d75f fd1dd45 b16d75f 2da7508 b16d75f c9a473f fd1dd45 d3036fa 2da7508 d3036fa 597a3e1 d3036fa 597a3e1 d3036fa 597a3e1 c93d198 61d589d 9a15952 d3036fa 9a15952 2da7508 c2aa8fe be4dbd7 e158b55 61d589d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
from fastapi import FastAPI, UploadFile
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
import subprocess
import os
import json
import uuid
import logging
import torch
from diffusers import (
StableDiffusionPipeline,
DPMSolverMultistepScheduler,
EulerDiscreteScheduler,
)
app = FastAPI()
def file_extension(filename):
filename_list = filename.split(".")
return filename_list[1]
@app.get("/generate")
def generate_image(prompt, model):
torch.cuda.empty_cache()
modelArray = model.split(",")
modelName = modelArray[0]
modelVersion = modelArray[1]
pipeline = StableDiffusionPipeline.from_pretrained(
str(modelName), torch_dtype=torch.float16
)
pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)
pipeline = pipeline.to("cuda")
image = pipeline(prompt, num_inference_steps=50, height=512, width=512).images[0]
filename = str(uuid.uuid4()) + ".jpg"
image.save(filename)
assertion = {
"assertions": [
{
"label": "com.truepic.custom.ai",
"data": {
"model_name": modelName,
"model_version": modelVersion,
"prompt": prompt,
},
}
]
}
json_object = json.dumps(assertion)
subprocess.check_output(
[
"./scripts/sign.sh",
filename,
"--assertions-inline",
json_object
]
)
subprocess.check_output(
[
"cp",
"output.jpg",
"static/" + filename,
]
)
return {"response": filename}
@app.post("/verify")
def verify_image(fileUpload: UploadFile):
logging.warning("in verify")
logging.warning(fileUpload.filename)
# check if the file has been uploaded
if fileUpload.filename:
# strip the leading path from the file name
fn = os.path.basename(fileUpload.filename)
# open read and write the file into the server
open(fn, "wb").write(fileUpload.file.read())
response = subprocess.check_output(
[
"./scripts/verify.sh",
fileUpload.filename,
]
)
logging.warning(response)
response_list = response.splitlines()
c2pa_string = str(response_list[0])
c2pa = c2pa_string.split(":", 1)
c2pa = c2pa[1].strip(" ").strip("'")
watermark_string = str(response_list[1])
watermark = watermark_string.split(":", 1)
watermark = watermark[1].strip(" ").strip("'")
original_media_string = str(response_list[2])
original_media = original_media_string.split(":", 1)
original_media = original_media[1].strip(" ").strip("'")
if original_media != 'n/a':
original_media_extension = file_extension(original_media)
logging.warning(original_media_extension)
filename = str(uuid.uuid4()) + original_media_extension
response = subprocess.check_output(
[
"cp",
original_media,
"static/" + filename,
]
)
original_media = filename
return {"response": fileUpload.filename, "contains_c2pa" : c2pa, "contains_watermark" : watermark, "original_media" : original_media}
app.mount("/", StaticFiles(directory="static", html=True), name="static")
@app.get("/")
def index() -> FileResponse:
return FileResponse(path="/app/static/index.html", media_type="text/html")
|